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Practical Question: how to measure scientific output 
and impact at various scales while accounting for 
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C O M M E N TA R Y “ ”
communications, social science, transla-
tional research, complex systems, technol-
ogy, business and management, research 
development, biomedical and life sciences, 
and physical sciences. The increasing inter-
est in professional gatherings centered on 
SciTS combined with recent progress in 
SciTS research and practice suggest that 
this community is coalescing into its own 
area of inquiry.

MULTI-LEVEL, MIXED-METHODS  
APPROACH FOR SCITS
The burgeoning field of SciTS can serve as a 
transformative melting pot of existing the-
ories and scientific techniques. We propose 
a multi-level, mixed-methods approach 
that can serve as a framework capable of 
organizing the diverse forms of inquiry and 
interlink research on individual scientists, 
teams, and populations of teams (Fig. 1).

Researchers working at different levels 
study different facets of the team science 
ecology, contribute different theories and 
techniques, and generate diverse findings. 
Each level might analyze different data; use 
multiple approaches, techniques, and visual 
representations; and provide different in-
sights. The combination of insights from all 
levels is considerably larger than their sum.

First, “macro-level” research examines 
teams at the population level and leads 
to insights about patterns of collabora-
tion that are broad in both their amount 
and their form, and that provide input on 
how to measure the growth and effect of 
knowledge. Macro-level studies might use 
terabytes of data that require large-scale 
computing infrastructures to process and 
communicate results. Recent work com-
bines computational, behavioral, organiza-
tional, and other methodological approach-
es to derive new insights at this broad level. 
Second, “meso-level” research increases 
our understanding at the group level, ex-
amining, for example, how interaction pat-
terns, the nature and amount of intra-team 
communications, and the composition of 
the team contribute to team process and 
outcomes. Such approaches can use net-
work analysis—the representation of data 
as nodes and their interlinkages—to study 
the evolution and impact of (social) net-
work structures at varied time scales or an-
alyze the specific quality and type of inter-
action via examination of communication 
context and patterns within teams (12). 
Third, “micro-level” research considers the 
individuals within the team; their training, 

dispositions, and education; and how such 
factors predispose them to particular types 
of collaboration. Micro-level studies can be 
quantitative and, if considering network 
analyses, involve many attributes for nodes 
and linkages. Other methods include indi-
vidual-level analysis of researchers partici-
pating within teams in which members are 
queried about their experiences as team 
members (13, 14).

Each of these levels addresses different 
issues that can be roughly classified into 

when (temporal), where (geospatial), what 
(topical), with whom (network), how (pro-
cess), and why (modeling) questions. Table 
1 presents key insights from studies apply-
ing these differing levels of analysis.

Each level of team science involves a set 
of challenges. Macro-level challenges ad-
dress organizational change and the exist-
ing culture that either stifles or encourages 
collaboration and interdisciplinarity. Chal-
lenges at the meso-level involve explicat-
ing the group dynamics emerging in team 
science as well as how to better understand 
and train teamwork in science teams. At 
the micro-level (the individual level), but 
tightly intertwined with the macro- and 
meso-level issues, are issues pertaining to 
how individual scientists acquire training 
in the scientific aspects of their work, in the 
process of innovation and discovery, and 
in communication and conflict resolution. 
Table 2 lists key challenges that need to be 
addressed within these three levels.

MOVING FORWARD WITH SCITS
We conclude with a description of the 
more general challenges and opportunities 
surrounding SciTS. First, research relevant 
to SciTS is conducted in a variety of set-
tings—academic and commercial, technol-
ogy development, and government sector. 
As such, the variety of research results pub-
lished, approaches and tools applied, and 
data produced is impressive. We identified 
more than 180 core papers and reports 
that convey key results in team science re-
search. Of those papers, 17 were published 
between 1944 and 2000, with the remain-
der being published since 2001, showcas-
ing a surge of activity on SciTS. Many of 
the reported studies use proprietary pub-
lication data sets (such as Web of Science 
by Thomson Reuters or Scopus by Elsevier) 
and most tools are commercial, making it 
difficult to replicate results. Data such as 
journal publications, conference proceed-
ings, and book chapters, but also patents 
and grant awards, are not comprehensive-
ly collected across the sciences. The data 
studied are typically published in English, 
although science is international and mul-
tilingual. Furthermore, the unification of 
data records (such as the identification of 
all papers by one scholar as stored in differ-
ent databases) and the interlinkage of col-
lections of data (such as the retrieval of all 
papers that were supported by one funding 
award) proves difficult because no unique 
identifiers are available.

Fig. 1. Multi-level, mixed-methods approach 
to SciTS. Team science can be studied at differ-
ent levels using different approaches. Together, 
the insights derived from these studies are worth 
more than the sum of their parts.   C
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K. Börner, et al. A multi-level systems 
perspective for the science of team science. 
Sci. Transl. Med. 2, 49cm24 (2010).

Science is a multi-scale system with emergent complexity
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• How fast is science changing? How might paradigm shifts in 
science affect science careers?!

!
• Are there quantifiable patterns of scientific success? Are they 

useful in the career evaluation process? !
!

• Are the levels of competition in science efficient? Are there ways 
to improve the sustainability of science careers while at the same 
time maintaining a high level of competitive selection? !
!

• How do metrics for individual achievement depend on 
collaboration and time-window factors? How to reduce the 
multiple-allocation of credit (by fractional citation counts?) 
without penalizing the incentives to collaborate? 

Motivating Questions
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Chain-like NON Star-like NON Tree-like NON

Figure 6 | Three types of loopless NON composed of five coupled
networks. All have the same percolation threshold and the same giant
component. The dark node represents the origin network on which failures
initially occur.

NON, (2) a tree-like random regular fully dependent NON, (3) a
loop-like Erd⇤s–Rényi partially dependent NON and (4) a random
regular network of partially dependent Erd⇤s–Rényi networks.
All cases represent different generalizations of percolation theory
for a single network. In all examples except (3) we apply the
no-feedback condition.

(1) We solve explicitly96 the case of a tree-like NON (Fig. 6)
formed by n Erd⇤s–Rényi networks92–94 with the same average
degrees k, p1 = p, pi = 1 for i ⌃= 1 and qij = 1 (fully interdependent).
From equations (15) and (16) we obtain an exact expression for the
order parameter, the size of the mutual giant component for all p, k
and n values,

P⇧ = p[1�exp(�kP⇧)]n (17)

Equation (17) generalizes known results for n= 1,2. For n= 1, we
obtain the known result pc =1/k, equation (11), of an Erd⇤s–Rényi
network and P⇧(pc) = 0, which corresponds to a continuous
second-order phase transition. Substituting n= 2 in equation (17)
yields the exact results of ref. 73.

Solutions of equation (17) are shown in Fig. 7a for several values
of n. The special case n= 1 is the known Erd⇤s–Rényi second-order
percolation law, equation (12), for a single network. In contrast,
for any n> 1, the solution of (17) yields a first-order percolation
transition, that is, a discontinuity of P⇧ at pc.

Our results show (Fig. 7a) that the NON becomes more vul-
nerable with increasing n or decreasing k (pc increases when
n increases or k decreases). Furthermore, for a fixed n, when
k is smaller than a critical number kmin(n), pc ⇤ 1, meaning
that for k < kmin(n) the NON will collapse even if a single
node fails96.

(2) In the case of a tree-like network of interdependent random
regular networks97, where the degree k of each node in each network
is assumed to be the same, we obtain an exact expression for the
order parameter, the size of the mutual giant component for all
p, k and n values,

P⇧ = p
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(18)

Numerical solutions of equation (18) are in excellent agreement
with simulations. Comparing with the results of the tree-like
Erd⇤s–Rényi NON, we find that the robustness of n interdependent
random regular networks of degree k is significantly higher than
that of the n interdependent Erd⇤s–Rényi networks of average
degree k. Moreover, whereas for an Erd⇤s–Rényi NON there exists
a critical minimum average degree k = kmin that increases with n
(below which the system collapses), there is no such analogous kmin
for the random regular NON system. For any k > 2, the random
regular NON is stable, that is, pc < 1. In general, this is correct
for any network with any degree distribution, Pi(k), such that

Pi(0) = Pi(1) = 0, that is, for a network without disconnected or
singly connected nodes97.

(3) In the case of a loop-like NON (for dependences in
one direction) of n Erd⇤s–Rényi networks96, all the links are
unidirectional, and the no-feedback condition is irrelevant. If the
initial attack on each network is the same, 1�p, qi�1i = qn1 = q and
ki =k, using equations (15) and (16)we obtain thatP⇧ satisfies

P⇧ = p(1�e�kP⇧)(qP⇧ �q+1) (19)

Note that if q = 1 equation (19) has only a trivial solution
P⇧ = 0, whereas for q = 0 it yields the known giant component
of a single network, equation (12), as expected. We present
numerical solutions of equation (19) for two values of q in
Fig. 7b. Interestingly, whereas for q = 1 and tree-like structures
equations (17) and (18) depend on n, for loop-like NON structures
equation (19) is independent of n.

(4) For NONs where each ER network is dependent on exactly
m other Erd⇤s–Rényi networks (the case of a random regular
network of Erd⇤s–Rényi networks), we assume that the initial attack
on each network is 1� p, and each partially dependent pair has
the same q in both directions. The n equations of equation (15)
are exactly the same owing to symmetries, and hence P⇧ can be
obtained analytically,

P⇧ = p
2m

(1�e�kP⇧)[1�q+
⇣
(1�q)2 +4qP⇧]m (20)

from which we obtain

pc =
1

k(1�q)m
(21)

Again, as in case (3), it is surprising that both the critical threshold
and the giant component are independent of the number of
networks n, in contrast to tree-like NON (equations (17) and (18)),
but depend on the coupling q and on both degrees k and
m. Numerical solutions of equation (20) are shown in Fig. 7c,
and the critical thresholds pc in Fig. 7c coincide with the
theory, equation (21).

Remark on scale-free networks
The above examples regarding Erd⇤s–Rényi and random regular
networks have been selected because they can be explicitly
solved analytically. In principle, the generating function formalism
presented here can be applied to randomly connected networks
with any degree distribution. The analysis of the scale-free networks
with a power-law degree distribution P(k) ⌅ k�⌦ is extremely
important, because many real networks can be approximated
by a power-law degree distribution, such as the Internet, the
airline network and social-contact networks, such as networks
of scientific collaboration2,10,51. Analysis of fully interdependent
scale-free networks73 shows that, for interdependent scale-free
networks, pc > 0 even in the case ⌦ ⇥ 3 for which in a single
network pc = 0. In general, for fully interdependent networks,
the broader the degree distribution the greater pc for networks
with the same average degree73. This means that networks with a
broad degree distribution become less robust than networks with
a narrow degree distribution. This trend is the opposite of the
trend found in non-interacting isolated networks. The explanation
of this phenomenon is related to the fact that in randomly
interdependent networks the hubs in one network may depend on
poorly connected nodes in another. Thus the removal of a randomly
selected node in one network may cause a failure of a hub in
a second network, which in turn renders many singly connected
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Quantifying social group evolution
Gergely Palla1, Albert-László Barabási2 & Tamás Vicsek1,3

The rich set of interactions between individuals in society1–7

results in complex community structure, capturing highly con-
nected circles of friends, families or professional cliques in a social
network3,7–10. Thanks to frequent changes in the activity and com-
munication patterns of individuals, the associated social and com-
munication network is subject to constant evolution7,11–16. Our
knowledge of themechanisms governing the underlying commun-
ity dynamics is limited, but is essential for a deeper understanding
of the development and self-optimization of society as a whole17–22.
We have developed an algorithm based on clique percolation23,24

that allows us to investigate the time dependence of overlapping
communities on a large scale, and thus uncover basic relationships
characterizing community evolution. Our focus is on networks
capturing the collaboration between scientists and the calls be-
tween mobile phone users. We find that large groups persist for
longer if they are capable of dynamically altering their member-
ship, suggesting that an ability to change the group composition
results in better adaptability. The behaviour of small groups dis-
plays the opposite tendency—the condition for stability is that
their composition remains unchanged. We also show that know-
ledge of the time commitment of members to a given community
can be used for estimating the community’s lifetime. These find-
ings offer insight into the fundamental differences between the
dynamics of small groups and large institutions.

The data sets we consider are (1) the monthly list of articles in the
Cornell University Library e-print condensed matter (cond-mat)
archive spanning 142 months, with over 30,000 authors25, and (2)
the record of phone calls between the customers of a mobile phone
company spanning 52weeks (accumulated over two-week-long per-
iods), and containing the communication patterns of over 4 million
users. Both types of collaboration events (a new article or a phone
call) document the presence of social interaction between the
involved individuals (nodes), and can be represented as (time-
dependent) links. The extraction of the changing link weights from
the primary data is described in Supplementary Information. In
Fig. 1a, b we show the local structure at a given time step in the
two networks in the vicinity of a randomly chosen individual
(marked by a red frame). The communities (social groups repre-
sented by more densely interconnected parts within a network of
social links) are colour coded, so that black nodes/edges do not
belong to any community, and those that simultaneously belong to
two or more communities are shown in red.

The two networks have rather different local structure: the collab-
oration network of scientists emerges as a one-mode projection of the
bipartite graph between authors and papers, so it is quite dense and
the overlap between communities is very significant. In contrast, in the
phone-call network the communities are less interconnected and are
often separated by one ormore inter-community nodes/edges. Indeed,
whereas the phone record captures the communication between two
people, the publication record assigns to all individuals that contribute
to a paper a fully connected clique. As a result, the phone data are

dominated by single links, whereas the co-authorship data have many
dense, highly connected neighbourhoods. Furthermore, the links in
the phone network correspond to instant communication events, cap-
turing a relationship as it happens. In contrast, the co-authorship data

1Statistical and Biological Physics ResearchGroup of theHAS, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Center for ComplexNetwork Research andDepartments of Physics and
Computer Science, University of Notre Dame, Indiana 46566, USA. 3Department of Biological Physics, Eötvös University, Pázmány P. stny. 1A, H-1117 Budapest, Hungary.
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Figure 1 | Structure and schematic dynamics of the two networks
considered. a, The co-authorship network. The figure shows the local
community structure at a given time step in the vicinity of a randomly selected
node. b, As a but for the phone-call network. c, The filled black symbols
correspond to the average size of the largest subset of members with the same
zip-code, Ænrealæ, in the phone-call communities divided by the same quantity
found in randomsets, Ænrandæ, as a function of the community size, s. Similarly,
the open symbols show the average size of the largest subset of community
members with an age falling in a three-year time window, divided by the same
quantity in random sets. The error bars in both cases correspond to Ænrealæ/
(Ænrandæ1srand) and Ænrealæ/(Ænrandæ2srand), where srand is the standard
deviation in the case of the random sets. d, The Ænrealæ/s as a function of s, for
both the zip-code (filledblack symbols) and theage (open symbols).e, Possible
events in community evolution. f, The identificationof evolving communities.
The links at t (blue) and the links at t1 1 (yellow) aremerged into a joint graph
(green). Any CPM community at t or t1 1 is part of a CPM community in the
joined graph, so these can be used to match the two sets of communities.
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G. Palla, A.-L. Barabasi, T. Vicsek. Quantifying social group 
evolution. Nature 446, 664-667 (2007)

S. Wuchty, B. F. Jones, B. Uzzi. The increasing dominance!
of teams in production of knowledge. Science 316, 1036-9 (2007)

Limited complexity!
in small knowledge networks

The Royal Society of London 
for Improving Natural 
Knowledge, Established 1660

Early scholarly societies, e.g. national 
societies, scholastic monasteries, noble courts

⇒

Emergent complexity!
in large knowledge networks

Academic staff!
2,100

!
Urban property!
210 acres (85 ha) (Main campus)!
21 acres (8.5 ha) (Medical campus)!
360 acres (150 ha) (Allston campus)!
4,500 acres (1,800 ha) (other holdings)

Endowment!
US$30 billion (2012) (Large-cap company,!
e.g. same market capitalization as Enel and 
Mitsubishi)

Admin. staff!
2,500 non-medical!
11,000 medical

growth and 	


increasing	



organizational 	


complexity

Paradigm shifts

⇒
Convent of San Francesco, !
XV century

Harvard University

http://en.wikipedia.org/wiki/Urban_area
http://en.wikipedia.org/wiki/Financial_endowment
http://en.wikipedia.org/wiki/1000000000_%28number%29


How might paradigm shifts in science affect science careers?

Micro (individual careers)	


• Growth of careers	


• Collaboration patterns within careers	


• Competition	


• Issues of ethics  (rules of the game)

A quantitative perspective on ethics in large team science, !
Sci. & Eng. Ethics (2014) A. M. Petersen, I. Pavlidis., I. Semendeferi.!!
Together We Stand, Nature Physics (2014)!
I. Pavlidis, A. M. Petersen, I. Semendeferi.  

For example: Access to resources/opportunities is becoming increasingly 
dependent on an individual’s embedding within teams / organizational units

Macro (institutions)	


• Exponential growth of Science	


• Economics of research universities 
and govt. funding	


• Increasing role of teams    
(division of labor) in science

c



Increased competition in Future Academic Careers!
–  Bottle-neck in the tenure track model: redirection of PhDs into 

postdocs and non-tenure track personnel!
–Demographic shifts: aging, globalization and brain drain

Science	
  and	
  Engineering	
  Fields
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  of	
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Redesigning the credit system in science

Together We Stand, Nature Physics (2014) I. Pavlidis, A. M. Petersen, I. Semendeferi. 



Citation deflator: accounting for the growth of scientific production

Reputation and impact in academic careers, A. M. Petersen, S. 
Fortunato, R. K. Pan, K. Kaski, O. Penner, A. Rungi, M. Riccaboni, H. 
E. Stanley, F. Pammolli.  Proc. Nat. Acad. Sci. USA 111, 
15316-15321 (2014).!!
Methods for detrending success metrics to account for 
inflationary and deflationary factors. A. M. Petersen, O. Penner, 
H. E. Stanley.  Eur. Phys. J. B 79, 67-78 (2011).
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 PLoS One

Open Access Journals

PLoS One: 	


~ 6,700 articles in 2010  and ~ 14,000 in 2011 

⇒ × 2 growth in one year alone!	



... who is reading/refereeing all these papers??
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PLoS One: 



How much of career growth (ζ) can be explained by scientific inflation?

* the number of publications D(t) 
within each discipline we analyzed 
is growing exponentially, roughly at 
a 5.5% per year (13-year doubling)!

 !
* Each new paper can cite another 

paper just once                                 
⇒  D(t) a “deflator index”

9

N(40) ⌘ 418 in the latter case. We also vary the reputation
effect from ⇢ = 0 to ⇢ = 0.15 to demonstrate the significant
impact of reputation on the growth of c

p

, and thus the entire
profile c

i

(r). We calculate f�c

x

using c⇥ ⌘ 40 and the same
set of parameters as described previously in the section for
the synthetic careers shown in in Fig. 4. Comparing the 4
scenarios, it is quite evident that reputation plays a strong role
in the likelihood of having a paper exceed c⇥. By simulation
period t = 5 there is already a significant difference, with
f�c

x

= 0.003 for ↵ = 1.0 and f�c

x

= 0.001 for ↵ = 1.2 for
⇢ = 0.15 compared to f�c

x

⇡ 0.0004 for ↵ = 1.0 and ↵ =

1.2 for ⇢ = 0.0. By the end of the simulation (t = 40) there
is more than a 100-fold increase in the likelihood of c

p

� c⇥
in the presence of the reputation effect, with f�c

x

= 0.24 for
↵ = 1.0 and f�c

x

= 0.32 for ↵ = 1.2 and ⇢ = 0.15, as
compared to f�c

x

= 0.001 for ↵ = 1.0 and ↵ = 1.2 with
⇢ = 0.0.

S6. ACCOUNTING FOR GROWTH TRENDS IN SCIENCE

The growth of the scientific endeavor during the 20th cen-
tury has occurred at a steady pace, reflecting the feedback of
new technology on R&D growth, the increasing size of the
scientific labor force, the increasing productivity of scientists,
and innovations in the publication and dissemination process.
As a result, the total numbers of publications has increased
remarkably over the last century, and continues to grow in
part due to innovations in online-only journals which have
further reduced the submission-to-publication time. In addi-
tion, these growth trends also impact the way scientists search
and retrieve information in journals [68], and also impacts the
quality assessment of journals which are typically based on
citation measures, e.g. the Impact Factor [69, 70].

In this section we analyze the role of intrinsic growth trends
on our quantitative measures of growth and reputation within
careers. Specifically, we (i) determine how much of the
growth in C

i

(t) reflects the increased supply of citations due
to exponential growth in total publication output, and (ii) es-
timate the reputation, life-cycle, and preferential attachment
effects using a fixed-effect regression model that better con-
trols for secular variation across time.

A. Deflating citation counts using a scientific output index

Accounting for underlying growth trends using an appro-
priate deflator index (detrending) is important for comparing
nominal prices in economics, but is a general feature of com-
paring success measures derived in other social systems across
time, such as n sports [71] as well as science [1, 3].

In the context of our analysis, a citation count can be in-
terpreted as being relative to the total possible number of ci-
tations achievable. Since a new paper in year t can cite pre-
viously published papers only once, the basic index for the
“relative” value of citations is the publication rate. Hence,
in order to estimate the effect of growth on longitudinal ci-
tation counts, we calculated for each discipline (cell biology,

physics, and mathematics) the total number of publications
per year, D(t) using the complete Thomson Reuters Web of
Science dataset. Fig. S12(A) shows the growth of D(t) for
each discipline over the time period 1965-2010. The growth
is approximately exponential with growth rate g

p

correspond-
ing to an approximately 5% growth rate in papers per year for
each discipline analyzed.

So how much could this underlying inflation sustain the
growth we observed in total citations C

i

(t) of individual re-
searchers? Since a new paper can cite an old paper only once,
we used D(t) as a “citation deflator” to normalize the value of
the citation counts within a particular discipline, normalizing
the citations arriving in year t by D(t),
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Hence, we applied this deflator to the citation growth trajec-
tories C

i

(t) obtaining the deflated growth trajectory CD

i

(t).
We then recalculated a growth exponent ⇣

i

corresponding to
the model form CD

i

(t) ⇠ t⇣i for each scientist i. Fig. S12(B)
shows the probability distribution P (⇣) of individual ⇣

i

val-
ues before and after we deflated the citation trajectories. The
overall effect of deflating citations in this way was to reduce
the ⇣

i

values by only roughly 15%, meaning that the intrin-
sic reputation growth of stellar careers still follows algebraic
growth with ⇣

i

& 2.

B. Controlling for growth trends in science using a fixed
effects citation model

Here we aim to determine the impact of growth trends on
the estimates of the life-cycle effect (⌧ ), the paper (preferen-
tial attachment) effect (⇡), and the author-specific reputation
effect (⇢). We used multivariate regression to estimate the pa-
rameters of the model

ln�c
i,p

(t+ 1) = b0 + b1 ln ci,p(t) + b2(t� t
p,0 + 1)

+ b3 ln�C
i

(t) + year
t

+ author
i

+ ✏
i,t

,

(S16)

which controls for both time (via a fixed-effect variable year
t

controlling for idiosyncratic shocks) and author-specific time-
invariant features (via a fixed-effect variable author

i

). Fur-
thermore, in the regression we also clustered standard errors
by year to account for the increasing number of observations
with increasing year. The regression parameters are b1 = ⇡,
b2 = �1/⌧ , and b3 = ⇢, year variable year

t

, author variable
author

i

, error term ✏
i,t

and log-normal noise factor b0 = ln ⌘.
The local reputation R

i

(t) ⌘ [�C
i

(t)]⇢ = [C
i

(t)�C
i

(t�1)]

⇢

is non-cumulative, being measured only in year t. This choice
for R(t) makes the regression model more amenable to con-
trolling for yearly fixed effects. As in the first model, we ran
the regression using papers with ⌧ > 1 and for observations
with �c

p

(t + 1) > 0 within the first 30 years of a given sci-
entist’s career.

Despite this subtle change to the regression model, which
makes the regression more amenable to controlling for under-
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N(40) ⌘ 418 in the latter case. We also vary the reputation
effect from ⇢ = 0 to ⇢ = 0.15 to demonstrate the significant
impact of reputation on the growth of c

p

, and thus the entire
profile c

i

(r). We calculate f�c

x

using c⇥ ⌘ 40 and the same
set of parameters as described previously in the section for
the synthetic careers shown in in Fig. 4. Comparing the 4
scenarios, it is quite evident that reputation plays a strong role
in the likelihood of having a paper exceed c⇥. By simulation
period t = 5 there is already a significant difference, with
f�c

x

= 0.003 for ↵ = 1.0 and f�c

x

= 0.001 for ↵ = 1.2 for
⇢ = 0.15 compared to f�c

x

⇡ 0.0004 for ↵ = 1.0 and ↵ =

1.2 for ⇢ = 0.0. By the end of the simulation (t = 40) there
is more than a 100-fold increase in the likelihood of c

p

� c⇥
in the presence of the reputation effect, with f�c

x

= 0.24 for
↵ = 1.0 and f�c

x

= 0.32 for ↵ = 1.2 and ⇢ = 0.15, as
compared to f�c

x

= 0.001 for ↵ = 1.0 and ↵ = 1.2 with
⇢ = 0.0.

S6. ACCOUNTING FOR GROWTH TRENDS IN SCIENCE
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tury has occurred at a steady pace, reflecting the feedback of
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and innovations in the publication and dissemination process.
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further reduced the submission-to-publication time. In addi-
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i

(t) reflects the increased supply of citations due
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timate the reputation, life-cycle, and preferential attachment
effects using a fixed-effect regression model that better con-
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in order to estimate the effect of growth on longitudinal ci-
tation counts, we calculated for each discipline (cell biology,

physics, and mathematics) the total number of publications
per year, D(t) using the complete Thomson Reuters Web of
Science dataset. Fig. S12(A) shows the growth of D(t) for
each discipline over the time period 1965-2010. The growth
is approximately exponential with growth rate g

p

correspond-
ing to an approximately 5% growth rate in papers per year for
each discipline analyzed.

So how much could this underlying inflation sustain the
growth we observed in total citations C

i

(t) of individual re-
searchers? Since a new paper can cite an old paper only once,
we used D(t) as a “citation deflator” to normalize the value of
the citation counts within a particular discipline, normalizing
the citations arriving in year t by D(t),

�cD
i,p

(t) ⌘ �c
i,p

(t)/D(t) and �CD

i

(t) ⌘ �C
i

(t)/D(t) .
(S15)

Hence, we applied this deflator to the citation growth trajec-
tories C

i

(t) obtaining the deflated growth trajectory CD

i

(t).
We then recalculated a growth exponent ⇣

i

corresponding to
the model form CD

i

(t) ⇠ t⇣i for each scientist i. Fig. S12(B)
shows the probability distribution P (⇣) of individual ⇣

i

val-
ues before and after we deflated the citation trajectories. The
overall effect of deflating citations in this way was to reduce
the ⇣

i

values by only roughly 15%, meaning that the intrin-
sic reputation growth of stellar careers still follows algebraic
growth with ⇣

i

& 2.

B. Controlling for growth trends in science using a fixed
effects citation model

Here we aim to determine the impact of growth trends on
the estimates of the life-cycle effect (⌧ ), the paper (preferen-
tial attachment) effect (⇡), and the author-specific reputation
effect (⇢). We used multivariate regression to estimate the pa-
rameters of the model

ln�c
i,p

(t+ 1) = b0 + b1 ln ci,p(t) + b2(t� t
p,0 + 1)

+ b3 ln�C
i

(t) + year
t

+ author
i

+ ✏
i,t

,

(S16)

which controls for both time (via a fixed-effect variable year
t

controlling for idiosyncratic shocks) and author-specific time-
invariant features (via a fixed-effect variable author

i

). Fur-
thermore, in the regression we also clustered standard errors
by year to account for the increasing number of observations
with increasing year. The regression parameters are b1 = ⇡,
b2 = �1/⌧ , and b3 = ⇢, year variable year

t

, author variable
author

i

, error term ✏
i,t

and log-normal noise factor b0 = ln ⌘.
The local reputation R

i

(t) ⌘ [�C
i

(t)]⇢ = [C
i

(t)�C
i

(t�1)]

⇢

is non-cumulative, being measured only in year t. This choice
for R(t) makes the regression model more amenable to con-
trolling for yearly fixed effects. As in the first model, we ran
the regression using papers with ⌧ > 1 and for observations
with �c

p

(t + 1) > 0 within the first 30 years of a given sci-
entist’s career.

Despite this subtle change to the regression model, which
makes the regression more amenable to controlling for under-

ζ captures the significant 
reputation growth across the 
career, even when discounting 
for background inflation of 
scientific production	





Patterns of growth in science careers

10 20 30 40 50 60 70100

101

102

103

104

ci
ta

tio
ns

net citations, C (t )

ci
ta

tio
ns

B. Vogelstein

academic age

academic age

R. P. Feynman

10 20 30 40 50 60 70
100

101

102

103

104

5 10 15 20 25 30 35100

101
102
103
104

105

ci
ta

tio
ns

academic age

R. P. Feynman

5 10 15 20 25 30 35
100

101

102

103

104

105

academic age

ci
ta

tio
ns

B. Vogelstein

10 20 30 40 50 60 70100

101

102

103

104

ci
ta

tio
ns

net citations, C (t )

ci
ta

tio
ns

B. Vogelstein

academic age

academic age

R. P. Feynman

10 20 30 40 50 60 70
100

101

102

103

104

5 10 15 20 25 30 35100

101
102
103
104

105

ci
ta

tio
ns

academic age

R. P. Feynman

5 10 15 20 25 30 35
100

101

102

103

104

105

academic age
ci

ta
tio

ns

B. Vogelstein

Statistical regularities in the rank-citation 
profile of scientists, A. M. Petersen,  H. E. 
Stanley, S. Succi. Scientific Reports 1, 181 
(2011). !!
The Z-index: A geometric representation of 
productivity and impact which accounts for 
information in the entire rank-citation profile, 
A. M. Petersen, S. Succi  J. Informetrics 7, 
823-832 (2013). !!
Reputation and impact in academic careers, 
A. M. Petersen, S. Fortunato, R. K. Pan, K. 
Kaski, O. Penner, A. Rungi, M. Riccaboni, H. E. 
Stanley, F. Pammolli.  Proc. Nat. Acad. Sci. USA 
111, 15316-15321 (2014).



5

i
100 101

100

101

102

100 101
100

101

102

103

104

C
ita

tio
n 

tra
je

ct
or

y,
 ⟨C
!(t

)⟩ 3

1

_

Pu
bl

ic
at

io
n 

tra
je

ct
or

y,
 ⟨N
!(t

)⟩

1.5

1

!
[A/B] 1.30(1)

[C] 1.15(2)
[D] 1.55(1)
[E] 1.01(1)

_

"
[A/B] 2.52(1)

[C] 2.42(4)
[D] 2.65(1)
[E] 1.39(3)

career age, t

a

b

c

Citation network

Collaboration
network
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paper, unless otherwise noted, we use T
i

= Min[30, l
i

] in order to restrict our analysis on the

“growth period” of the academic career.

Fig. 3(B) shows the characteristic production trajectory obtained by averaging together the

A individual trajectories ˜N
i

(t) belonging to each dataset, h ˜N(t)i ⌘ A�1
P

A

i=1 Ni

(t)/hn
i

i, We

rescale the characteristic trajectory by h ˜N(1)i,

hN 0
(t)i = h ˜N(t)i/h ˜N(1)i ⇠ t↵ (S1)

resulting in arbitrary ordinate units but a common starting point at (1, 1), which make it easier to

visually compare the scaling exponents ↵ across datasets in Fig. 3. We calculate ↵ using OLS

regression of lnhN 0
(t)i versus ln t over the range t 2 [1, 30]. We perform analogous OLS regres-

sion of individual N
i

(t) over the range t 2 [3, T
i

] to calculate individual ↵
i

(see Tables S1-S9).

These empirical facts demonstrate that accelerated career growth ↵
i

> 1 is a characteristic prop-

erty of the top cohort, consistent with increasing returns arising from knowledge and production

spillovers.

B. Longitudinal citation dynamics

The scientific impact of a paper p is universally measured by the cumulative number of citations

c
p

(⌧) =

tp,0+⌧�1X

x=tp,0

�c
p

(x) , (S2)

where we define �c
p

(t) as the number of citations received by the paper in career year t, with

the definition for paper age ⌧ = t � t
p,0 + 1 which defines the relation between the paper age ⌧ ,

the career age t, and the first year the paper was cited, t
p,0. Without loss of generality, the paper

index p can be replaced by a rank-ordered index r. Hence, the total number of citations to the

papers coauthored by individual i is calculated by integrating the rank-ordered citation distribution

c
i

(r, t),

C
i

(t) =

Ni(t)X

r=1

c
i

(r, t) . (S3)

Figures 4 and S1–S3 illustrate longitudinal citation profiles for 33 scientists, showing the citation

trajectories for their top papers as well as C
i

(t).

5

paper, unless otherwise noted, we use T
i

= Min[30, l
i

] in order to restrict our analysis on the

“growth period” of the academic career.

Fig. 3(B) shows the characteristic production trajectory obtained by averaging together the

A individual trajectories ˜N
i

(t) belonging to each dataset, h ˜N(t)i ⌘ A�1
P

A

i=1 Ni

(t)/hn
i

i, We

rescale the characteristic trajectory by h ˜N(1)i,

hN 0
(t)i = h ˜N(t)i/h ˜N(1)i ⇠ t↵ (S1)

resulting in arbitrary ordinate units but a common starting point at (1, 1), which make it easier to

visually compare the scaling exponents ↵ across datasets in Fig. 3. We calculate ↵ using OLS

regression of lnhN 0
(t)i versus ln t over the range t 2 [1, 30]. We perform analogous OLS regres-

sion of individual N
i

(t) over the range t 2 [3, T
i

] to calculate individual ↵
i

(see Tables S1-S9).

These empirical facts demonstrate that accelerated career growth ↵
i

> 1 is a characteristic prop-

erty of the top cohort, consistent with increasing returns arising from knowledge and production

spillovers.

B. Longitudinal citation dynamics

The scientific impact of a paper p is universally measured by the cumulative number of citations

c
p

(⌧) =

tp,0+⌧�1X

x=tp,0

�c
p

(x) , (S2)

where we define �c
p

(t) as the number of citations received by the paper in career year t, with

the definition for paper age ⌧ = t � t
p,0 + 1 which defines the relation between the paper age ⌧ ,

the career age t, and the first year the paper was cited, t
p,0. Without loss of generality, the paper

index p can be replaced by a rank-ordered index r. Hence, the total number of citations to the

papers coauthored by individual i is calculated by integrating the rank-ordered citation distribution

c
i

(r, t),

C
i

(t) =

Ni(t)X

r=1

c
i

(r, t) . (S3)

Figures 4 and S1–S3 illustrate longitudinal citation profiles for 33 scientists, showing the citation

trajectories for their top papers as well as C
i

(t).

5

tt = cumulative # of citations at paper age τ

= cumulative citations by career age t

The Discrete Generalized Beta Distribution (DGBD) model for ci(r) 
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Scientific careers can be difficult to summarize since success and
the potential for future success are related to a large variety of
different factors. Here we analyze the complete publication ca-
reers of 200 scientists and find remarkable statistical regularity in
the functional form of the rank-citation profile ci(r) for each sci-
entist i. The quantifiable regularity suggests that there is a fun-
damental underlying mechanism for career development, which
presumably applies in general to many types of competitive ca-
reers. Specifically, we find that the rank-ordered citation distri-
bution ci(r) can be approximated by a discrete generalized beta
distribution (DGBD) over the entire range of ranks r, which allows
for the characterization and comparison of ci(r) using a common
framework. The functional form of the DGBD has two scaling ex-
ponents, �i and ⇥i, which determine the scaling behavior of ci(r)
for both small and large rank r. The crossover between two scal-
ing regimes suggests a complex relation between the success of
a scientist’s most famous papers and the success of their com-
plementary papers, together constituting their career publication
works. We use the analytic properties of the DGBD to derive an
exact expression for the crossover value r⇥ which highlights the
distinguished papers of a given author, characterized by the c-star
value ci(r⇥), in analogy to the h-index. We compare the c(r⇥), �,
⇥, and h-index values, and several other metrics, for 200 success-
ful scientists from the physics community. Furthermore, we also
develop a new function, the “gap index" G(�h), which has predic-
tive capability in estimating the future increase �h of the h-index
using the values of ci(r) for r � h.

socio-physics | productivity | Zipf law | legacy

A scientist’s career is subject over time to a myriad of random
factors. As a result, the path to success is neither simple nor

regular. The rank-citation profile ci(r), where ci(r) is the number
of citations of individual i to his/her paper r ranked in decreasing
order ci(1) ⌅ ci(2) ⌅ . . . ci(N), quantitatively summarizes the
publication career of a given scientist. In order to better understand
the statistical regularities of scientific careers, we analyze the career
citation data of 200 highly cited scientists.

We select a given scientist based upon the cumulative number of
citations he/she has obtained from his/her publications in the jour-
nal Physical Review Letters (PRL), comparing all scientists who have
published at least one article in PRL over the 50-year period 1958-
2008. Although all scientists analyzed here can be considered largely
successful, we separate the scientists into two data sets for compari-
son:

[A] The 100 most-cited scientists according to the citation shares met-
ric [1] (with a set average h-index ⌃h⌥ = 61 ± 21).

[B] 100 other “control" scientists, taken from the same PRL database
(with a set average h-index ⌃h⌥ = 44 ± 15).

We describe in more detail the selection procedure for these two sets
in the Methods section of the Supporting Information (SI) text.

There are many conceivable ways to quantify the impact of a
scientist’s N articles constituting ci(r). The h-index [2] is widely
acknowledged as a single number conveying an approximate quan-
tification of a scientist’s cumulative impact. The h-index of a given
scientist i is defined by a single point on the rank-citation profile ci(r)
satisfying

c(h) = h . [1]

In Fig. 1 we plot the number of citations ci(r) for the top 4 physi-
cists, ranked according to their h-indices. Additionally, we plot the
lines Hp(r) ⇥ p r for 5 values of p = {1, 2, 5, 20, 80}. We use the
“generalized h-index" hp, proposed in [3] and further analyzed in [4],
defined as the intersection of Hp(r) with ci(r),

c(hp) = php [2 ]

with the relation hp ⇤ hq for p > q. The value p ⇥ 1 recovers the
h-index proposed by Hirsch so that h = h1. We will use the gener-
alized h-index to establish quantitative indicators of scale invariance
in the citation profiles, as well as the mobility of the h index.

Model for c(r)
For each scientist i analyzed, we find that ci(r) can be approximated
by the discrete generalized beta distribution (DGBD) [5, 6],

c(r) ⇥ Ar��(N + 1� r)⇥ . [3]

The parameters A, �, and ⇥ and N are each defined for a given
ci(r) corresponding to an individual scientists i, however we suppress
the index i in equations to keep the notation concise. We estimate
the two scaling parameters � and ⇥ using multiple linear regression
of log ci(r), replacing N with r1, the largest value of r for which
c(r) ⌅ 1 (we find that r1/N ⇧ 0.84 ± 0.01 for all careers ana-
lyzed). Fig. 1 demonstrates the excellent approximation of ci(r) by
the DGBD, for both large and small r. The regression correlation
coefficient R > 0.97 for all log ci(r) profiles analyzed.

The DGBD proposed in [5] is an improvement over the Zipf-law
(power-law) model and the stretched exponential model [2] since it
reproduces the varying curvature in ci(r) for both small and large
r. The DGBD has been successfully used to model numerous rank-
ordering profiles analyzed in [5, 6] which arise in the natural and
socio-economic sciences. Typically, an exponential cutoff is imposed
in the power-law model, and justified as a finite-size effect. The
DGBD does not require this assumption, but rather, introduces a sec-
ond scaling exponent ⇥ which controls the curvature in ci(r) for large
r values. The relative values of the � and ⇥ exponents are thought
to capture two distinct scales that contribute to the evolution of ci(r)
[5, 6]. In the case of citation statistics analyzed here, there is likely a
rank-dependent dynamics that distinguishes between “heavy-weight”
papers and “newborn” papers in the time evolution of ci(r).

The exponent � defines an approximate scaling regime that is
truncated for rank values larger than a rank cutoff rc ⇥ (r1 + 1)/⇥.
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FIG. 5: Characteristic properties of the DGBD. We graphically illustrate the derivation of the characteristic ci(r) crossover values that
locate the two tail regimes of ci(r), in particular, the distinguished “peak” paper regime corresponding to paper ranks r ⇥ r⇥ (shaded region).
The crossover between two scaling regimes suggests a complex reinforcement relation between the impact of a scientist’s most famous papers
and the impact of his/her other papers. (a) The ci(r) plotted on log-log axes with N = 278, � = 0.83 and ⇥ = 0.67, corresponding to the
average values of the Dataset [A] scientists.The hatched magenta curve is the H1(z) line on the log-linear scale with corresponding h-index
value h = 104. The r⇥ value for ci(r) is not visibly obvious. (b) We plot on log-linear axes the centered citation profile ci(z) (solid black
curve) given by the symmetric rank transformation z = r� z0 in Eq. [7]. This representation better highlights the peak paper regime, but fails
to highlight the power-law � scaling. (c) We plot the corresponding logarithmic derivative ⇤(z) of c(z) (solid black curve), which represents
the relative change in c(z). The dashed red line corresponds to�⇤, where ⇤ is the average value of ⇤(z) given by Eq. [12]. The values of z±,
indicated by the solid vertical green lines, are defined as the intersection of ⇤ with ⇤(z) given by Eq. [13]. The regime z < z� corresponds to
the best papers of a given author. The hatched blue line corresponds to z�

x

which marks the crossover between the � and ⇥ scaling regimes.

[1] Mazloumian, A., Eom, Y-H., Helbing, D., Lozano, S., Fortu-
nato, S. How citation boosts promote scientific paradigm shifts
and nobel prizes. PLoS ONE 6(5), e18975 (2011).

[2] Merton, R. K. The Matthew effect in science. Science 159, 56–
63 (1968).

[3] Merton, R. K. The Matthew effect in science, II: Cumulative
advantage and the symbolism of intellectual property. ISIS 79,
606–623 (1988).

[4] Cole, J.R. Social Stratification in Science. (Chicago, Illinois,
The University of Chicago Press, 1981).

[5] Guimera, R., Uzzi, B., Spiro, J., Amaral, L. A. N. Team assem-
bly mechanisms determine collaboration network structure and
team performance. Science 308, 697–702 (2005).

[6] Malmgren, R. D., Ottino, J. M., Amaral, L. A. N. The role
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locate the two tail regimes of ci(r), in particular, the distinguished “peak” paper regime corresponding to paper ranks r ⇥ r⇥ (shaded region).
The crossover between two scaling regimes suggests a complex reinforcement relation between the impact of a scientist’s most famous papers
and the impact of his/her other papers. (a) The ci(r) plotted on log-log axes with N = 278, � = 0.83 and ⇥ = 0.67, corresponding to the
average values of the Dataset [A] scientists.The hatched magenta curve is the H1(z) line on the log-linear scale with corresponding h-index
value h = 104. The r⇥ value for ci(r) is not visibly obvious. (b) We plot on log-linear axes the centered citation profile ci(z) (solid black
curve) given by the symmetric rank transformation z = r� z0 in Eq. [7]. This representation better highlights the peak paper regime, but fails
to highlight the power-law � scaling. (c) We plot the corresponding logarithmic derivative ⇤(z) of c(z) (solid black curve), which represents
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β

⇒ Hence, 

knowing both 
the

 h-index and C is 
≈ redundant

Ni = # of publications
βi = scaling slope of top papers
γi = truncation scaling of less-cited papers
Ci = total citations from all papers

Scaling 
relation 
between 

C, h, and β

C ~ h1+β

total citations C
i

and h
i

was shown to be

C
i

⇠ h1+�i
i

. (S12)

The DGBD is an improvement over the Zipf law (also called the generalized power-law or Lotka-

law) model and the stretched exponential model since it reproduces the varying curvature in c
i

(r)

for both small and large r. Instead of discarding the curvature in the large r regime as finite-size

effects, the DGBD accounts for the curvature using a second scaling exponent �
i

. The parameters

A
i

, �
i

, �
i

and N
i

are each defined for a given c
i

(r) corresponding to an individual scientists i.

We estimate the two scaling parameters �
i

and �
i

using Mathematica software to perform a

multiple linear regression of ln c
i

(r) = lnA
i

��
i

ln r+�
i

ln(N
i

+1� r) in the base functions ln r

and ln(N
i

+1� r). In our fitting procedure we replace N with r1, the largest value of r for which

c(r) � 1 (for example, we find that r1/Ni

⇡ 0.84 ± 0.01 for careers in datasets [A] and [B] for

which the regression correlation coefficient R
i

> 0.97 in all cases). To properly weight the data

points for better regression fit over the entire range, we use only 20 values of c
i

(r) data points that

are equally spaced on the logarithmic scale in the range r 2 [1, r1].

The �
i

value determines the relative change in the c
i

(r) values for the high-rank papers, and

thus it can be used to further distinguish the careers of two scientists with the same h-index. In

particular, smaller �
i

values characterize flat profiles with relatively low contrast between the high

and low-rank regions of any given profile, while larger �
i

values indicate a sharper separation

between the two regions.

In order to demonstrate the common functional form of the DGBD model, we collapse

all 200 c
i

(r) in datasets [C] and [D] along a universal scaling function c(r0) = 1/r0 by using

the rescaled rank values r0 ⌘ r�i defined for each curve. In Fig. S7 we plot the quantity

c
i

(r0) ⌘ c
i

(r)/A(r1 + 1 � r)� , using the best-fit �
i

and A
i

parameter values for each individual

c
i

(r) profile. While the c
i

(r) curves in the left panels are jumbled and distributed over a large

range of c(r) values, the rescaled c
i

(r) all lie approximately along the master curve c(r0) = 1/r0.
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 discrete generalized Beta function 
(DGBD)	

!

simple scaling relation between 	


the h-index and C

~ t 
ζi

The Z-index: A geometric representation of productivity and impact 
which accounts for information in the entire rank-citation profile,  
A. M. Petersen, S. Succi  J. Informetrics 7, 823-832 (2013). !
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Patterns of “success”: publication and impact growth patterns of 
highly cited scientists

The data: longitudinal Web of Science 
publication and citation data for 450 top 

scientists; 83,693 papers, 7,577,084 
citations tracked over 387,103 years!

!Set A: 100 most-cited physicists, average 
h-index,〈h〉= 61 ± 21 !
!
Set B: 100 additional highly-prolific 
physicists,〈h〉 = 44 ± 15 !
!
Set C: 100 assistant professors from 50 
US physics depts.,〈h〉 = 15 ± 7 !
!
Set D: 100 most-cited cell biologists,
〈h〉 = 98 ± 35 !
!
Set E: 50 highly-cited pure 
mathematicians,〈h〉 = 20 ± 10

ζ > α > 1: knowledge, reputation, 
and collaboration spillovers 
contribute to sustainable growth 
across the academic career



On the Predictability of Future Impact in Science, O. Penner, R. K. Pan, 
A. M. Petersen, K. Kaski, S. Fortunato. Scientific Reports 3, 3052 (2013). !!
The case for caution in predicting scientists' future impact, O. Penner, 
A. M. Petersen, R. K. Pan, S. Fortunato, Physics Today 66, 8-9 (2013). 

Potential pitfalls in the forecasting of careers?



COMMENT
ART Information designer 
Edward Tufte sculpts 
Feynman equations p.207

CLIMATE Glacier photographer 
captures vanishing frozen 
landscapes p.206

NOVELS Celebrating the 
acerbic ‘radium age’ 
of science fiction p.204

FUNDING In defence of more 
scrutiny for elite grant-
holders at the NIH p.203

We research scientists often worry 
about the future of our careers. Is 
our research an exciting path or 

a dead end that will end our careers prem-
aturely? Predicting scientific trajectories is 
a daily task for hiring committees, funding 
agencies and department heads who probe 
CVs searching for signs of scientific potential. 

One popular measure of success is physi-
cist Jorge Hirsch’s h-index1, which captures 
the quality (citations) and quantity (num-
ber) of papers, thus representing scientific 
achievements better than either factor alone. 
A scientist has an h-index of n if he or she has 
published n articles receiving at least n cita-
tions each2. Einstein, Darwin and Feynman, 
for example, have impressive h-indices of 96, 

63 and 53, respectively. According to Hirsch, 
an h-index of 12 for a physicist — meaning 
12 papers with at least 12 citations each — 
could qualify him or her for tenure at a major 
university. 

However, the h-index3 and similar metrics4 
can capture only past accomplishments, not 
future achievements5. Here we attempt to 
predict the future h-index of scientists on the 
basis of features found in most CVs.

We maintain that the best way of predict-
ing a scientist’s future success is for peers to 
evaluate scientific contributions and research 
depth, but think that our methods could be 
valuable complementary tools.

The typical research CV contains infor-
mation on the number of publications, 

those in high-profile journals, the h-index 
and collaborators. One can also infer inter-
disciplinary breadth, the length and quality 
of training, the amount of funding received 
and even the standing of the scientist’s PhD 
adviser. Such factors are taken into account 
for hiring decisions, but how should they be 
weighted? Fortunately, obtaining data on the 
scientific activities of individual researchers 
has never been easier. Using all of these fea-
tures, we can begin to probe the scientific 
enterprise statistically. 

VITAL STATISTICS
To construct a formula to predict future 
h-index, we assembled a large data set and 
analysed it using machine-learning tech-
niques. Our initial sample from academic-
tree.org — a crowd-sourced website listing 
scientists’ mentors, trainees and collabora-
tors — contains the names and institutions 
of about 34,800 neuroscientists, 2,000 scien-
tists studying the fruitfly Drosophila and 1,300 
evolutionary researchers. We matched these 
authors to records in Scopus, an online data-
base of academic papers and citation data. We 
restricted our analysis to authors who had 
accrued an h-index greater than 4 (to exclude 
inactive scientists); to publications after 1995 
(because electronic records are sparse before 
then); to authors who had published their 
first manuscript in the past 5–12 years; and 
to authors who were identifiable in Scopus. 

That left us with 3,085 neuroscientists, 
57 Drosophila researchers and 151 evolu-
tionary scientists for whom we constructed a 
history of publication, citation and funding. 

For each year since the first article pub-
lished by a given scientist, we used the features 
that were available at the time to forecast their 
h-index a number of years into the future. 
For example, we reconstructed how the CV 
features of a scientist looked five years after 
publishing his or her first article, and found 
a relationship between those features and the 
reconstructed h-index five years on. 

Starting with neuroscientists, we 
attempted to predict the h-index of each 
scientist 5 years ahead — a timescale rel-
evant for tenure decisions — using a linear 

regression with elastic 
net regularization6 (see 
Supplementary Infor-
mation at go.nature.
com/mtvuzr). The 

Predicting 
scientific success

Daniel E. Acuna, Stefano Allesina and Konrad P. 
Kording present a formula to estimate the future 

h-index of life scientists. 

 NATURE.COM
For more on science 
metrics, see: 
go.nature.com/nj2xqk
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These are approximate equations for 
predicting the h-index of neuroscientists in 
the future. They are probably reasonably 

precise for life scientists, but likely to be less 
meaningful for the other sciences. Try it for 
yourself online at go.nature.com/z4rroc.

METR ICS
Predict your future h-index

 ● Predicting next year (R2 = 0.92):
h+1 = 0.76 + 0.37√―n + 0.97h − 0.07y + 0.02j + 0.03q

 ● Predicting 5 years into the future (R2 = 0.67):
h+5 = 4 + 1.58√―n + 0.86h − 0.35y + 0.06j + 0.2q

 ● Predicting 10 years into the future (R2 = 0.48):
h+10 = 8.73 + 1.33√―n + 0.48h − 0.41y + 0.52j + 0.82q

Key: n, number of articles written; h, current h-index; y, years since publishing first article; 
j, number of distinct journals published in; q, number of articles in Nature, Science, Nature 
Neuroscience, Proceedings of the National Academy of Sciences and Neuron.

PATHS TO SUCCESS 
The accuracy of future h-index prediction decreases over time, but the Acuna et al. formula predicts 
future h-index better than does current h-index alone (left). The contribution of each factor to the 
formula accuracy also changes over time (right). Shading indicates 95% confidence error bars.
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We research scientists often worry 
about the future of our careers. Is 
our research an exciting path or 

a dead end that will end our careers prem-
aturely? Predicting scientific trajectories is 
a daily task for hiring committees, funding 
agencies and department heads who probe 
CVs searching for signs of scientific potential. 

One popular measure of success is physi-
cist Jorge Hirsch’s h-index1, which captures 
the quality (citations) and quantity (num-
ber) of papers, thus representing scientific 
achievements better than either factor alone. 
A scientist has an h-index of n if he or she has 
published n articles receiving at least n cita-
tions each2. Einstein, Darwin and Feynman, 
for example, have impressive h-indices of 96, 

63 and 53, respectively. According to Hirsch, 
an h-index of 12 for a physicist — meaning 
12 papers with at least 12 citations each — 
could qualify him or her for tenure at a major 
university. 

However, the h-index3 and similar metrics4 
can capture only past accomplishments, not 
future achievements5. Here we attempt to 
predict the future h-index of scientists on the 
basis of features found in most CVs.

We maintain that the best way of predict-
ing a scientist’s future success is for peers to 
evaluate scientific contributions and research 
depth, but think that our methods could be 
valuable complementary tools.

The typical research CV contains infor-
mation on the number of publications, 

those in high-profile journals, the h-index 
and collaborators. One can also infer inter-
disciplinary breadth, the length and quality 
of training, the amount of funding received 
and even the standing of the scientist’s PhD 
adviser. Such factors are taken into account 
for hiring decisions, but how should they be 
weighted? Fortunately, obtaining data on the 
scientific activities of individual researchers 
has never been easier. Using all of these fea-
tures, we can begin to probe the scientific 
enterprise statistically. 

VITAL STATISTICS
To construct a formula to predict future 
h-index, we assembled a large data set and 
analysed it using machine-learning tech-
niques. Our initial sample from academic-
tree.org — a crowd-sourced website listing 
scientists’ mentors, trainees and collabora-
tors — contains the names and institutions 
of about 34,800 neuroscientists, 2,000 scien-
tists studying the fruitfly Drosophila and 1,300 
evolutionary researchers. We matched these 
authors to records in Scopus, an online data-
base of academic papers and citation data. We 
restricted our analysis to authors who had 
accrued an h-index greater than 4 (to exclude 
inactive scientists); to publications after 1995 
(because electronic records are sparse before 
then); to authors who had published their 
first manuscript in the past 5–12 years; and 
to authors who were identifiable in Scopus. 

That left us with 3,085 neuroscientists, 
57 Drosophila researchers and 151 evolu-
tionary scientists for whom we constructed a 
history of publication, citation and funding. 

For each year since the first article pub-
lished by a given scientist, we used the features 
that were available at the time to forecast their 
h-index a number of years into the future. 
For example, we reconstructed how the CV 
features of a scientist looked five years after 
publishing his or her first article, and found 
a relationship between those features and the 
reconstructed h-index five years on. 

Starting with neuroscientists, we 
attempted to predict the h-index of each 
scientist 5 years ahead — a timescale rel-
evant for tenure decisions — using a linear 

regression with elastic 
net regularization6 (see 
Supplementary Infor-
mation at go.nature.
com/mtvuzr). The 
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Major Flaws! 	


1. Aggregating across different    

career-age cohorts	


2. h-index is non-decreasing ⇒               

R2 will be artificially large

t1 career age
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Difficulty in predicting scientists’ future impact
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Assistant Professors in Physics Top-cited Professors in Physics

nc (t | {Ti}) = # of citations and h (t | {Ti}) = h-index computed at the end year t of each 
period, ONLY using papers produced in each period {Ti }. Comparing early, mid, late-

career (non-overlapping) intervals shows that age and prestige affect the predictability!

C
itations

h-index

{ }{ }
phd postdoc

15
{ }

tenure track
late



200$Prolific$authors$of$Physical&Review&Le:ers$(PRL)
100$Prolific$authors$of$Cell

1 5 10 15

�t (years)

0.0

0.2

0.4

0.6

0.8

1.0

R
2

A

Prominent physicists

1 5 10 15

�t (years)

B

Prominent biologists

t=All
t=7
t=5
t=3

Young scientists are less predictable
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The R2 (“predictability”) within younger age-
cohorts is significantly less than the pooled (All) 



• On the Predictability of Future Impact in Science, O. Penner, R. K. Pan, A. M. 
Petersen, K. Kaski, S. Fortunato. Scientific Reports 3, 3052 (2013). !!

• The case for caution in predicting scientists' future impact, O. Penner, A. M. 
Petersen, R. K. Pan, S. Fortunato, Physics Today 66, 8-9 (2013). 

Sources of uncertainty in predicting future impactWhat are we after?
h(t) ! h(t+�t)

h(t) = H-index at career age t

np(t) = number of publications (co)authored

j(t) = number of distinct journals of publications

q(t) = number of papers in high impact journals

h(t+�t) depends on

t = Career age of scientist

Monday, November 18, 13

use regression model for predicting h(t+Δt)
?



h(t) = H-index at career age t

np(t) = number of publications (co)authored

j(t) = number of distinct journals of publications

q(t) = number of papers in high impact journals

Non-Cumulative measures

�h(t,�t) = h(t+�t)� h(t)

�h(t,�t) depends on

Monday, November 18, 13

Consider Non-Cumulative incremental measures

… does not suffer from endogenous correlations  
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incremental h-index, Dh(t, Dt) 5 h(t 1 Dt) 2 h(t). Following the
derivation above, the mean E Dh t,Dtð Þ½ $~mDt and variance
Var[Dh(t, Dt)] 5 s2Dt are independent of time, resulting in the
auto-covariance Cov[Dh(t 1 t, Dt), Dh(t, Dt)] 5 0 if t . 0. Hence,
it is important to examine the R2 for non-cumulative measures. Here
we focus on a regression model for the incremental h-index Dh(t, Dt)
of a scientist at career age t, which by analogy with Eq. 2 reads

Dh t,Dtð Þ~a0 t,Dtð Þzah t,Dtð Þh tð Þza ffiffiffiffinp
p t,Dtð Þ

ffiffiffiffiffiffiffiffiffiffi
np tð Þ

q

zaj t,Dtð Þj tð Þzaq t,Dtð Þq tð Þ:
ð8Þ

In Supplementary Fig. S5 we show this model’s ‘‘predictive power’’,
as measured by R2, for different career ages t and varying horizonsDt.
All the curves except for early career years t 5 1 and t 5 2 follow
similar behavior and there is no consistent trend of decreasing R2

with decreasing t. The careers at t 5 1 show lower correlation,
indicating that the state of an individual’s CV after his/her first
year of publishing is a poor predictor of his/her future trajectory.
In Figure 4 we show this average predictive power for the model
when applied to established physicists, biologists and mathema-
ticians from different age cohorts. It is immediately clear that
when dealing with the non-cumulative measure, Dh(t, Dt), the
model has significantly less predictive power.

Figure 4 also shows that the incremental variation in the h-index of
a prominent biologist is more tightly connected to his/her past met-
rics. We speculate this may be due to other factors, like leading a large
laboratory. We note similar behavior for prominent mathematicians.

As these three datasets represent only prominent scientists, selected
based upon their high success, the R2 values give an upper bound on
predictability of scientists in that field. In contrast the dataset of
physics assistant professors, young biologists and graphene research-
ers, all relatively young scientists, exhibit much lower R2. Finally we
show the variation of the mean of the standard coefficient of the
model. The coefficient related to h-index is not as important as we
found for Eq. 1, and other factors such as number of publications,
number of publications in distinct journals, and number of publica-
tions in top journals are more important. For prominent biologists
the coefficients for publication in top journals and number of pub-
lications are higher than for physicists. For mathematicians the coef-
ficient related to the number of distinct journals is largest. In relative
terms, the coefficient of the h-index is more important for physicists.

Although this figure shows the average trend, one ought to exer-
cise caution in interpreting the results because coefficients for scien-
tists at different stages of their careers are also different. For example,
Supplementary Fig. S6 shows the coefficient for age t 5 3, t 5 5 and t
5 10 for both prominent physicists and biologists. It is easy to see
that the coefficient related to the number of papers decreases as Dh is
measured over largerDt. Further, for biologists, the coefficient for the
number of publications in top journals is larger in the late part of
the career than in the early stages. Nevertheless, the coefficients of the
regression analysis were different even when for the same set of
scientist during different age of their career. This variation in the
coefficients across fields, as well as across career stages, indicates that
it is unlikely there is a unique set of parameter that can be used to
predict future impact for all cases.

Figure 4 | The ‘‘predictive power’’ of h-index increments (Dh(t, Dt)) for different discipline. (A,B,C) Variation of the mean R2 as a function of time
period Dt over which the increment is calculated for established physicists, biologists and mathematicians. The mean is calculated by averaging
over different career age cohorts t 5 2, …, 15. (D,E,F) Variation of the mean standard coefficient as a function ofDt. The shaded region indicates the 95%
confidence error bars. Similar plots are also shown for relatively young researchers in (G,H,I) for assistant professors in physics, biologists and graphene
researchers. As the careers of young scientists are short, in this case the mean is calculated by averaging over different career age cohorts t 5 2, …, 8. In all
the cases, overall regression model is significant (p , 1022).
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Modeling a non-cumulative measure: Δh(t+Δt,t)

1) Cumulative measures over-estimate prediction power!
2) R^2 “predictive power” and regression parameters depend on career age!
3) Early career scientists: “predictability” of h(t) is due to the non-decreasing 
incremental nature of h(t) and not much more!
4) Important not to overfit models: separate age cohorts

Lessons learned

** Reputation signaling:  !!
Interestingly, the 
predictive power 
due to publishing in 
top journals 
appears become 
less important 
further along the 
career



1. preferential attachment 	


2. citation life-cycles  	


3. author reputation effect

Reputation effect citation model

4

100 101
100

101

102

100 101
100

101

102

103

104
C

ita
tio

n 
tr

aj
ec

to
ry

, ⟨
C
!(t

)⟩ 3

1

_
Pu

bl
ic

at
io

n 
tr

aj
ec

to
ry

, ⟨
N
!(t

)⟩

1.5

1

!
[A/B] 1.30(1)

[C] 1.15(2)
[D] 1.55(1)
[E] 1.01(1)

_

"
[A/B] 2.52(1)

[C] 2.42(4)
[D] 2.65(1)
[E] 1.39(3)

career age, t

A

B

C

citations, cp

ci
ta

tio
n 

ra
te

 h
al

f-
lif

e,
 " 1

/2 ⇥

⇥

⇥
⇥

⇥⇥
⇥

⇥
⇥

⇤
⇤⇤⇤⇤⇤⇤

⇤
⇤

��

�

�
�

100 101 102 103
100

101

102

#
[A/B] 0.51

[D] 0.30
[E] 1.00

_

FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct
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FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct
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FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct
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FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct

# of new citations in year t+1 = 

Variability in the citation life-cycle. To isolate the effect of author
reputation upon the citation dynamics of individual papers it is impor-
tant to first have an understanding of the general citation dynamics of
papers. To this end, we first present results on general citation dynam-
ics that justify the components of our final model which accounts for
the finite citation life time of a publication. However, in studying ci-
tation dynamics several additional specific observations can be made
regarding the relative obsolescence of high and low impact publica-
tions.

Important scientific discoveries can cause paradigm shifts and sig-
nificantly boost the reputation of scientists associated with the discov-
ery [18]. However, most publications are not seminal contributions
but rather incremental advances with relatively short-term relevance.
In general, this means that the long-term citation rate of individual
papers decays according to a characteristic time scale. The relation
between the decay time scale and the cumulative citation impact of
a publication remains poorly understood, especially at the disaggre-
gated level of individual publication portfolios. Hence, in this section
we analyze the dynamics of the citation trajectory �cp(⌧), the num-
ber of new citations received in paper year ⌧ , where ⌧ is the number
of years since the paper was first cited.

We analyze �cp(⌧) at two levels of aggregation: (i) For each
discipline, we calculate an averaged �cp(⌧) calculated by collecting
papers with similar total citation counts cp. To achieve a scaled trajec-
tory that is better suited for averaging we normalize each individual
�cp(⌧) by its peak citation value, �c

0

p(⌧) ⌘ �cp(⌧)/Max[�cp(⌧)].
The top panels in Fig. 2 show the characteristic citation trajectory
of papers belonging to each of the top 5 quintiles of the aggregate
citation distribution. Each curve represents the average trajectory
h�c
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p(⌧) calculated from the Nq papers in quin-
tile q. (ii) For each career i, we calculate h�c

0

i(⌧)i by averaging over
groups of ranked citation sets within the publication portfolio. The
bottom panels in Fig. 2 show that even within top careers, there is a
significant variation in the publication life cycle.

At both levels of aggregation, the impact life cycle typically peaks
before paper age ⌧ ⇡ 5 years, except in cases where the paper is con-
ceivably ahead of its time and does not receive peak attention until
a later time (e.g., experimental validation of a previous theoretical
prediction, and vice versa). We define the half-life ⌧1/2 as the time to
reach half the peak citation rate, �c

0

(⌧1/2) = 1/2 in the decay phase.
Papers in the theoretical domains of mathematics and physics can have
extremely long ⌧1/2 > 40 years. Remarkably, some top mathematics
papers even have ⌧1/2 that span nearly the entire data sample dura-
tion 100 years for some papers, reflecting the foundational nature of
“progress by proof.” This is in contrast to top-cited cell biology pa-
pers in the last 50 years: even in the top 10% of most cited works
the value ⌧1/2 ⇡ 10 years, possibly reflecting a significantly higher
discovery rate, and in a related sense, a relatively faster obsolescence
rate.

Fig. 3(A) shows the scaling relation ⌧1/2 ⇠ c

⌦
p calculated for pa-

pers grouped into logarithmic bins of cp. Physics and biology differ
mainly for the highly cited papers, cp & 40, whereas mathematics
shows larger variation in ⌧1/2 per citation. For papers of varying im-
pact, the obsolescence rate can vary dramatically, and is quantified
by the ⌦ value which provides an approximate relation between cita-
tions and time. In mathematics ⌧1/2 / cp, indicating that the impact
is distributed roughly uniformly across time. However, for biology
papers the sub-linear relation with ⌦ ⇡ 0.30 indicates that for two
papers, one with twice the citation impact as the other, the more cited
paper gained twice the number of citations over a ⌧1/2 that was less
than twice as large as the ⌧1/2 of the less-cited paper. These differ-
ences in citation bursting across field are possibly related to the role
of bursty technological advancement, bursty funding initiatives, and
other social aspects of science that can give rise to non-linearities in
scientific advancement.

Patterns of growth for longitudinal reputation measures. Life-
cycle patterns of top scientists serve as a benchmarks characteristic
of sufficiently founded careers in that they are insignificantly affected
by negative productivity shocks across the career. Many top scien-
tists become directors of large labs, and so their creative endeavors
consist of parallel research efforts [19], where each production stream
requires a significant investment with uncertain “payoff ” and “payout
date”. Because of this uncertainty over the horizon of the investment,
especially in the context of finite lifetime of the scientist, theoretical
models predict a decrease in research productivity with age for scien-
tists who are more motivated by investment incentives as opposed to
problem-solving incentives [20]. These steadily increasing patterns
for top scientists suggest that the problem-solving attribute is a key
driver of extremely ambitious individuals. In this section we inves-
tigate the patterns of productivity and reputation growth across the
career, and use these patterns as statistical benchmarks for a career
portfolio model developed in the final section.

One of the most striking statistical patterns of all careers analyzed
in our top scientists dataset is the faster than linear growth in time,
both in cumulative publication number Ni(t) ⌘

Pt
t0=1 ni(t

0

) and
in cumulative citation count Ci(t) ⌘

PNi(t)
p=1 ci,p(t) for a large part

of a scientist’s “growth phase,” which we find to be ⇡ 30 years after
their first publication. Figures 3(B) and 3(C) show the characteristic
growth trajectories hN 0

(t)i ⇠ t

↵ and hC0

(t)i ⇠ t

⇣ , calculated by
an appropriate average over individual Ni(t) and Ci(t), respectively,
using arbitrary normalized ordinate units (see the methods described
in the SI) so that each longitudinal curve starts from the same point,
namely hN 0

(1)i = hC0

(1)i ⌘ 1. The growth trajectories are char-
acterized by superlinear algebraic growth, with ↵ & 1 and ⇣ > ↵

(values shown in Fig. 3). Individual exponents ↵i and ⇣i are also
calculated for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career in Ta-
bles S1–S9 of the SI. We averaged both ↵i and ⇣i within each dataset
and confirm that h↵ii ⇠= ↵, and h⇣ii ⇠= ⇣. Thus the aggregate pat-
terns hold at the individual scale. Figure 4 shows the evolution of the
publication portfolio quantified by the Zipf distribution of the papers
ranked in decreasing order ci(1) � ci(2) � · · · � ci(Ni) of rank r.
The curve ci(r) belongs to the class of the discrete generalized beta
distributions (DGBD), c(r) / r

��
(N +1�r)

� . We use ⇣i and �i as
quantitative benchmarks to confirm that our stochastic model matches
to values observed for real careers [4].

Measuring the reputation effect. The interacting networks illus-
trated in Fig. 1 serve as a platform for reputation signaling, a process
used to overcome information asymmetries between scientists and
other academic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor reputation ef-
fects early in the career [23]. Nevertheless, because we analyze top
scientists, the signaling advantage they receive early in their careers
by working with prestigious mentors/coauthors should be negligible
over the long run [22]. Furthermore, by analyzing top scientists, we
reduce the compound reputation effect occurring when two or more
highly reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of these
scientists on the citation rate. Hence, we assume that a majority of
the reputation signal is attributable to the central scientist i. Also, by
analyzing top-cited cohorts, we can establish an upper bound to the
strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper impact,
we use a regression model that simultaneously accounts for three
factors: (i) the paper citation effect ⇧p(t) ⌘ [cp(t)]

⇡ , (ii) the life
cycle effect Ap(⌧) ⌘ exp[�⌧p/⌧ ], and (iii) the author reputation
effect Ri(t) ⌘ [Ci(t)]

⇢. Again, we note that the reputation factor
R(t) ⇡

P
j Rj should conceivably aggregate the cumulative repu-

tations measures of all coauthors j, however due to data limitations
requiring disambiguation and career data for all coauthors, we make
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Variability in the citation life-cycle. To isolate the effect of author
reputation upon the citation dynamics of individual papers it is impor-
tant to first have an understanding of the general citation dynamics of
papers. To this end, we first present results on general citation dynam-
ics that justify the components of our final model which accounts for
the finite citation life time of a publication. However, in studying ci-
tation dynamics several additional specific observations can be made
regarding the relative obsolescence of high and low impact publica-
tions.

Important scientific discoveries can cause paradigm shifts and sig-
nificantly boost the reputation of scientists associated with the discov-
ery [18]. However, most publications are not seminal contributions
but rather incremental advances with relatively short-term relevance.
In general, this means that the long-term citation rate of individual
papers decays according to a characteristic time scale. The relation
between the decay time scale and the cumulative citation impact of
a publication remains poorly understood, especially at the disaggre-
gated level of individual publication portfolios. Hence, in this section
we analyze the dynamics of the citation trajectory �cp(⌧), the num-
ber of new citations received in paper year ⌧ , where ⌧ is the number
of years since the paper was first cited.

We analyze �cp(⌧) at two levels of aggregation: (i) For each
discipline, we calculate an averaged �cp(⌧) calculated by collecting
papers with similar total citation counts cp. To achieve a scaled trajec-
tory that is better suited for averaging we normalize each individual
�cp(⌧) by its peak citation value, �c

0

p(⌧) ⌘ �cp(⌧)/Max[�cp(⌧)].
The top panels in Fig. 2 show the characteristic citation trajectory
of papers belonging to each of the top 5 quintiles of the aggregate
citation distribution. Each curve represents the average trajectory
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p(⌧) calculated from the Nq papers in quin-
tile q. (ii) For each career i, we calculate h�c

0

i(⌧)i by averaging over
groups of ranked citation sets within the publication portfolio. The
bottom panels in Fig. 2 show that even within top careers, there is a
significant variation in the publication life cycle.

At both levels of aggregation, the impact life cycle typically peaks
before paper age ⌧ ⇡ 5 years, except in cases where the paper is con-
ceivably ahead of its time and does not receive peak attention until
a later time (e.g., experimental validation of a previous theoretical
prediction, and vice versa). We define the half-life ⌧1/2 as the time to
reach half the peak citation rate, �c

0

(⌧1/2) = 1/2 in the decay phase.
Papers in the theoretical domains of mathematics and physics can have
extremely long ⌧1/2 > 40 years. Remarkably, some top mathematics
papers even have ⌧1/2 that span nearly the entire data sample dura-
tion 100 years for some papers, reflecting the foundational nature of
“progress by proof.” This is in contrast to top-cited cell biology pa-
pers in the last 50 years: even in the top 10% of most cited works
the value ⌧1/2 ⇡ 10 years, possibly reflecting a significantly higher
discovery rate, and in a related sense, a relatively faster obsolescence
rate.

Fig. 3(A) shows the scaling relation ⌧1/2 ⇠ c

⌦
p calculated for pa-

pers grouped into logarithmic bins of cp. Physics and biology differ
mainly for the highly cited papers, cp & 40, whereas mathematics
shows larger variation in ⌧1/2 per citation. For papers of varying im-
pact, the obsolescence rate can vary dramatically, and is quantified
by the ⌦ value which provides an approximate relation between cita-
tions and time. In mathematics ⌧1/2 / cp, indicating that the impact
is distributed roughly uniformly across time. However, for biology
papers the sub-linear relation with ⌦ ⇡ 0.30 indicates that for two
papers, one with twice the citation impact as the other, the more cited
paper gained twice the number of citations over a ⌧1/2 that was less
than twice as large as the ⌧1/2 of the less-cited paper. These differ-
ences in citation bursting across field are possibly related to the role
of bursty technological advancement, bursty funding initiatives, and
other social aspects of science that can give rise to non-linearities in
scientific advancement.

Patterns of growth for longitudinal reputation measures. Life-
cycle patterns of top scientists serve as a benchmarks characteristic
of sufficiently founded careers in that they are insignificantly affected
by negative productivity shocks across the career. Many top scien-
tists become directors of large labs, and so their creative endeavors
consist of parallel research efforts [19], where each production stream
requires a significant investment with uncertain “payoff ” and “payout
date”. Because of this uncertainty over the horizon of the investment,
especially in the context of finite lifetime of the scientist, theoretical
models predict a decrease in research productivity with age for scien-
tists who are more motivated by investment incentives as opposed to
problem-solving incentives [20]. These steadily increasing patterns
for top scientists suggest that the problem-solving attribute is a key
driver of extremely ambitious individuals. In this section we inves-
tigate the patterns of productivity and reputation growth across the
career, and use these patterns as statistical benchmarks for a career
portfolio model developed in the final section.

One of the most striking statistical patterns of all careers analyzed
in our top scientists dataset is the faster than linear growth in time,
both in cumulative publication number Ni(t) ⌘

Pt
t0=1 ni(t
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) and
in cumulative citation count Ci(t) ⌘

PNi(t)
p=1 ci,p(t) for a large part

of a scientist’s “growth phase,” which we find to be ⇡ 30 years after
their first publication. Figures 3(B) and 3(C) show the characteristic
growth trajectories hN 0

(t)i ⇠ t

↵ and hC0

(t)i ⇠ t

⇣ , calculated by
an appropriate average over individual Ni(t) and Ci(t), respectively,
using arbitrary normalized ordinate units (see the methods described
in the SI) so that each longitudinal curve starts from the same point,
namely hN 0

(1)i = hC0

(1)i ⌘ 1. The growth trajectories are char-
acterized by superlinear algebraic growth, with ↵ & 1 and ⇣ > ↵

(values shown in Fig. 3). Individual exponents ↵i and ⇣i are also
calculated for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career in Ta-
bles S1–S9 of the SI. We averaged both ↵i and ⇣i within each dataset
and confirm that h↵ii ⇠= ↵, and h⇣ii ⇠= ⇣. Thus the aggregate pat-
terns hold at the individual scale. Figure 4 shows the evolution of the
publication portfolio quantified by the Zipf distribution of the papers
ranked in decreasing order ci(1) � ci(2) � · · · � ci(Ni) of rank r.
The curve ci(r) belongs to the class of the discrete generalized beta
distributions (DGBD), c(r) / r
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� . We use ⇣i and �i as
quantitative benchmarks to confirm that our stochastic model matches
to values observed for real careers [4].

Measuring the reputation effect. The interacting networks illus-
trated in Fig. 1 serve as a platform for reputation signaling, a process
used to overcome information asymmetries between scientists and
other academic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor reputation ef-
fects early in the career [23]. Nevertheless, because we analyze top
scientists, the signaling advantage they receive early in their careers
by working with prestigious mentors/coauthors should be negligible
over the long run [22]. Furthermore, by analyzing top scientists, we
reduce the compound reputation effect occurring when two or more
highly reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of these
scientists on the citation rate. Hence, we assume that a majority of
the reputation signal is attributable to the central scientist i. Also, by
analyzing top-cited cohorts, we can establish an upper bound to the
strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper impact,
we use a regression model that simultaneously accounts for three
factors: (i) the paper citation effect ⇧p(t) ⌘ [cp(t)]

⇡ , (ii) the life
cycle effect Ap(⌧) ⌘ exp[�⌧p/⌧ ], and (iii) the author reputation
effect Ri(t) ⌘ [Ci(t)]

⇢. Again, we note that the reputation factor
R(t) ⇡

P
j Rj should conceivably aggregate the cumulative repu-

tations measures of all coauthors j, however due to data limitations
requiring disambiguation and career data for all coauthors, we make
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Variability in the citation life-cycle. To isolate the effect of author
reputation upon the citation dynamics of individual papers it is impor-
tant to first have an understanding of the general citation dynamics of
papers. To this end, we first present results on general citation dynam-
ics that justify the components of our final model which accounts for
the finite citation life time of a publication. However, in studying ci-
tation dynamics several additional specific observations can be made
regarding the relative obsolescence of high and low impact publica-
tions.

Important scientific discoveries can cause paradigm shifts and sig-
nificantly boost the reputation of scientists associated with the discov-
ery [18]. However, most publications are not seminal contributions
but rather incremental advances with relatively short-term relevance.
In general, this means that the long-term citation rate of individual
papers decays according to a characteristic time scale. The relation
between the decay time scale and the cumulative citation impact of
a publication remains poorly understood, especially at the disaggre-
gated level of individual publication portfolios. Hence, in this section
we analyze the dynamics of the citation trajectory �cp(⌧), the num-
ber of new citations received in paper year ⌧ , where ⌧ is the number
of years since the paper was first cited.

We analyze �cp(⌧) at two levels of aggregation: (i) For each
discipline, we calculate an averaged �cp(⌧) calculated by collecting
papers with similar total citation counts cp. To achieve a scaled trajec-
tory that is better suited for averaging we normalize each individual
�cp(⌧) by its peak citation value, �c

0

p(⌧) ⌘ �cp(⌧)/Max[�cp(⌧)].
The top panels in Fig. 2 show the characteristic citation trajectory
of papers belonging to each of the top 5 quintiles of the aggregate
citation distribution. Each curve represents the average trajectory
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p(⌧) calculated from the Nq papers in quin-
tile q. (ii) For each career i, we calculate h�c
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i(⌧)i by averaging over
groups of ranked citation sets within the publication portfolio. The
bottom panels in Fig. 2 show that even within top careers, there is a
significant variation in the publication life cycle.

At both levels of aggregation, the impact life cycle typically peaks
before paper age ⌧ ⇡ 5 years, except in cases where the paper is con-
ceivably ahead of its time and does not receive peak attention until
a later time (e.g., experimental validation of a previous theoretical
prediction, and vice versa). We define the half-life ⌧1/2 as the time to
reach half the peak citation rate, �c

0

(⌧1/2) = 1/2 in the decay phase.
Papers in the theoretical domains of mathematics and physics can have
extremely long ⌧1/2 > 40 years. Remarkably, some top mathematics
papers even have ⌧1/2 that span nearly the entire data sample dura-
tion 100 years for some papers, reflecting the foundational nature of
“progress by proof.” This is in contrast to top-cited cell biology pa-
pers in the last 50 years: even in the top 10% of most cited works
the value ⌧1/2 ⇡ 10 years, possibly reflecting a significantly higher
discovery rate, and in a related sense, a relatively faster obsolescence
rate.

Fig. 3(A) shows the scaling relation ⌧1/2 ⇠ c
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p calculated for pa-

pers grouped into logarithmic bins of cp. Physics and biology differ
mainly for the highly cited papers, cp & 40, whereas mathematics
shows larger variation in ⌧1/2 per citation. For papers of varying im-
pact, the obsolescence rate can vary dramatically, and is quantified
by the ⌦ value which provides an approximate relation between cita-
tions and time. In mathematics ⌧1/2 / cp, indicating that the impact
is distributed roughly uniformly across time. However, for biology
papers the sub-linear relation with ⌦ ⇡ 0.30 indicates that for two
papers, one with twice the citation impact as the other, the more cited
paper gained twice the number of citations over a ⌧1/2 that was less
than twice as large as the ⌧1/2 of the less-cited paper. These differ-
ences in citation bursting across field are possibly related to the role
of bursty technological advancement, bursty funding initiatives, and
other social aspects of science that can give rise to non-linearities in
scientific advancement.

Patterns of growth for longitudinal reputation measures. Life-
cycle patterns of top scientists serve as a benchmarks characteristic
of sufficiently founded careers in that they are insignificantly affected
by negative productivity shocks across the career. Many top scien-
tists become directors of large labs, and so their creative endeavors
consist of parallel research efforts [19], where each production stream
requires a significant investment with uncertain “payoff ” and “payout
date”. Because of this uncertainty over the horizon of the investment,
especially in the context of finite lifetime of the scientist, theoretical
models predict a decrease in research productivity with age for scien-
tists who are more motivated by investment incentives as opposed to
problem-solving incentives [20]. These steadily increasing patterns
for top scientists suggest that the problem-solving attribute is a key
driver of extremely ambitious individuals. In this section we inves-
tigate the patterns of productivity and reputation growth across the
career, and use these patterns as statistical benchmarks for a career
portfolio model developed in the final section.

One of the most striking statistical patterns of all careers analyzed
in our top scientists dataset is the faster than linear growth in time,
both in cumulative publication number Ni(t) ⌘
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) and
in cumulative citation count Ci(t) ⌘
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p=1 ci,p(t) for a large part

of a scientist’s “growth phase,” which we find to be ⇡ 30 years after
their first publication. Figures 3(B) and 3(C) show the characteristic
growth trajectories hN 0

(t)i ⇠ t

↵ and hC0

(t)i ⇠ t

⇣ , calculated by
an appropriate average over individual Ni(t) and Ci(t), respectively,
using arbitrary normalized ordinate units (see the methods described
in the SI) so that each longitudinal curve starts from the same point,
namely hN 0

(1)i = hC0

(1)i ⌘ 1. The growth trajectories are char-
acterized by superlinear algebraic growth, with ↵ & 1 and ⇣ > ↵

(values shown in Fig. 3). Individual exponents ↵i and ⇣i are also
calculated for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career in Ta-
bles S1–S9 of the SI. We averaged both ↵i and ⇣i within each dataset
and confirm that h↵ii ⇠= ↵, and h⇣ii ⇠= ⇣. Thus the aggregate pat-
terns hold at the individual scale. Figure 4 shows the evolution of the
publication portfolio quantified by the Zipf distribution of the papers
ranked in decreasing order ci(1) � ci(2) � · · · � ci(Ni) of rank r.
The curve ci(r) belongs to the class of the discrete generalized beta
distributions (DGBD), c(r) / r
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� . We use ⇣i and �i as
quantitative benchmarks to confirm that our stochastic model matches
to values observed for real careers [4].

Measuring the reputation effect. The interacting networks illus-
trated in Fig. 1 serve as a platform for reputation signaling, a process
used to overcome information asymmetries between scientists and
other academic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor reputation ef-
fects early in the career [23]. Nevertheless, because we analyze top
scientists, the signaling advantage they receive early in their careers
by working with prestigious mentors/coauthors should be negligible
over the long run [22]. Furthermore, by analyzing top scientists, we
reduce the compound reputation effect occurring when two or more
highly reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of these
scientists on the citation rate. Hence, we assume that a majority of
the reputation signal is attributable to the central scientist i. Also, by
analyzing top-cited cohorts, we can establish an upper bound to the
strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper impact,
we use a regression model that simultaneously accounts for three
factors: (i) the paper citation effect ⇧p(t) ⌘ [cp(t)]

⇡ , (ii) the life
cycle effect Ap(⌧) ⌘ exp[�⌧p/⌧ ], and (iii) the author reputation
effect Ri(t) ⌘ [Ci(t)]

⇢. Again, we note that the reputation factor
R(t) ⇡

P
j Rj should conceivably aggregate the cumulative repu-

tations measures of all coauthors j, however due to data limitations
requiring disambiguation and career data for all coauthors, we make
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Author-specific factors matter!  !
There are important yet quantifiable  nuances to citation dynamics!!!



A) Reputation flows in the collaboration-citation network

!
We seek to quantify the impact of author reputation 

on the citation rate of his/her papers  (            )
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FIG. 1: Schematic illustration of the multiple scientific networks surrounding the central career i. Links j � k in the collaboration network
represent the dynamic coauthorship patterns between the nodes which are scientists; links p � q in the citation network represent references
between the nodes which are papers; the cross-links p � i between the networks represent the association between individual careers and the
corresponding publication portfolio, together serving as a platform for reputation signaling [14, 21, 22].

II. RESULTS

A. Reputation signaling

Academic career growth is a complex process emerging
from the structural, social, and cognitive aspects of science.
Figure 1 is a schematic illustration of a generic career i em-
bedded in the interacting networks of collaborators and cita-
tions. The links within each network are collaborations in the
pool of scientists and citations in the pool of publications, and
the cross-links represent the associations between individuals
and their publication outputs. While previous studies have fo-
cused on the citation network and the collaboration network
separately, here we profit from their interdependency.

Since these networks are dynamic, it is difficult to fully un-
derstand for any given individual, let alone the entire system,
the complex information contained by all the associations. As
a result, reputation has emerged as a key signaling mechanism
to address the dilemma of excessive information that arises,
for example, in the task of evaluating and comparing careers.
Reputation signals can flow between scientists j � k, be-
tween publications p � q, and between a publication and a
scientist, p � i. The latter relation corresponding to the repu-
tation flow from a scientist to a publication, i ⇥ p is the focus
of our analysis whereby author reputation can impact the ci-
tation rate of publications with a subsequent feedback upon
author reputation. To measure this relation we first account
for obsolescence features of the citation life-cycle as well as
patterns of publication growth within a career.

B. Variability in the citation life-cycle

To isolate the effect of author reputation upon the citation
dynamics of individual papers it is important to first have an

understanding of the general citation dynamics of papers. To
this end, we first present results on general citation dynamics
that justify the components of our final model which accounts
for the finite citation life time of a publication. However, in
studying citation dynamics several additional specific obser-
vations can be made regarding the relative obsolescence of
high and low impact publications.

Important scientific discoveries can cause paradigm shifts
and significantly boost the reputation of scientists associated
with the discovery [18]. However, most publications are not
seminal contributions but rather incremental advances with
relatively short-term relevance. In general, this means that the
long-term citation rate of individual papers decays according
to a characteristic time scale. The relation between the de-
cay time scale and the cumulative citation impact of a pub-
lication remains poorly understood, especially at the disag-
gregated level of individual publication portfolios. Hence, in
this section we analyze the dynamics of the citation trajectory
�cp(�), the number of new citations received in paper year � ,
where � is the number of years since the paper was first cited.

We analyze �cp(�) at two levels of aggregation: (i) For
each discipline, we calculate an averaged �cp(�) calculated
by collecting papers with similar total citation counts cp. To
achieve a scaled trajectory that is better suited for averag-
ing we normalize each individual �cp(�) by its peak citation
value, �c⇥p(�) � �cp(�)/Max[�cp(�)]. The top panels in
Fig. 2 show the characteristic citation trajectory of papers be-
longing to each of the top 5 quintiles of the aggregate cita-
tion distribution. Each curve represents the average trajectory
⇤�c⇥(�)⌅ � N�1

q

�
p �c⇥p(�) calculated from the Nq papers

in quintile q. (ii) For each career i, we calculate ⇤�c⇥i(�)⌅ by
averaging over groups of ranked citation sets within the pub-
lication portfolio. The bottom panels in Fig. 2 show that even
within top careers, there is a significant variation in the publi-
cation life cycle.

Measuring behavioral aspects: Reputation and Social Ties

Collaboration and citation networks provide 
channels for the flows of reputation signaling
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FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct
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FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct
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FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct
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FIG. 3: Quantifying the life-cycle of both papers and stellar ca-
reers. (A) Relation between ⇤1/2 and cumulative citations cp. (B,C)
Growth trajectories of the cumulative publications N(t) and citations
C(t), appropriately rescaled to start from unity in each ordinate, cap-
ture the persistence of career growth in top careers. The characteris-
tic � and ⇥ exponents shown in each legend are calculated over the
growth phase of the career, in (B) over the first 30 years and in (C)
over the first 20 years. The mathematicians [E] have distinct career
trajectories, with � � 1 since collaboration spillovers via division of
labor likely play a smaller role in publication rate growth. See Tables
S1–S9 for �i and ⇥i values calculated for individual careers.

Ci(t) ⌅
�Ni(t)

p=1 ci,p(t) for a large part of a scientist’s “growth
phase,” which we find to be ⌥ 30 years after their first publi-
cation. Figures 3(B) and 3(C) show the characteristic growth
trajectories ↵N ⇤(t)� ⌃ t� and ↵C ⇤(t)� ⌃ t⌅ , calculated by
an appropriate average over individual Ni(t) and Ci(t), re-
spectively, using arbitrary normalized ordinate units (see the
methods described in the SI) so that each longitudinal curve

starts from the same point, namely ↵N ⇤(1)� = ↵C ⇤(1)� ⌅ 1.
The growth trajectories are characterized by superlinear al-
gebraic growth, with � � 1 and ⇤ > � (values shown in
Fig. 3). Individual exponents �i and ⇤i are also calculated
for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career
in Tables S1–S9 of the SI. We averaged both �i and ⇤i within
each dataset and confirm that ↵�i� ⌃= �, and ↵⇤i� ⌃= ⇤. Thus
the aggregate patterns hold at the individual scale. Figure 4
shows the evolution of the publication portfolio quantified by
the Zipf distribution of the papers ranked in decreasing order
ci(1) ⇧ ci(2) ⇧ · · · ⇧ ci(Ni) of rank r. The curve ci(r)
belongs to the class of the discrete generalized beta distribu-
tions (DGBD), c(r)  r�⇥(N + 1� r)⇤ . We use ⇤i and ⇥i as
quantitative benchmarks to confirm that our stochastic model
matches to values observed for real careers [4].

D. Measuring the reputation effect

The interacting networks illustrated in Fig. 1 serve as a
platform for reputation signaling, a process used to overcome
information asymmetries between scientists and other aca-
demic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor repu-
tation effects early in the career [23]. Nevertheless, because
we analyze top scientists, the signaling advantage they re-
ceive early in their careers by working with prestigious men-
tors/coauthors should be negligible over the long run [22].
Furthermore, by analyzing top scientists, we reduce the com-
pound reputation effect occurring when two or more highly
reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of
these scientists on the citation rate. Hence, we assume that a
majority of the reputation signal is attributable to the central
scientist i. Also, by analyzing top-cited cohorts, we can es-
tablish an upper bound to the strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper im-
pact, we use a regression model that simultaneously accounts
for three factors: (i) the paper citation effect ⇥p(t) ⌅ [cp(t)]⇧ ,
(ii) the life cycle effect Ap(⌥) ⌅ exp[�⌥p/⌥ ], and (iii) the au-
thor reputation effect Ri(t) ⌅ [Ci(t)]⌃. Again, we note that
the reputation factor R(t) ⌥

�
j Rj should conceivably ag-

gregate the cumulative reputations measures of all coauthors
j, however due to data limitations requiring disambiguation
and career data for all coauthors, we make the approximation
R(t) ⌥ Ri(t). We perform a multiple regression to estimate
the ⇧, ⌥ , and ⌃ values which parameterize the citation model,

�ci,p(t + 1) ⌅ ⌅ ⇤⇥p(t)⇤Ap(⌥)⇤Ri(t) , (1)

with the additional multiplicative noise term ⌅.
To test for basic mechanistic differences between the cita-

tion dynamics of highly-cited papers and less-cited papers, we
first analyze the relation between �cp(t + 1) and cp(t) (cor-
responding to the limit ⌥ � ⌦ and ⌃ = 0). This analysis
shown in Fig. S8 indicates that papers with citations above a
slow but substantial citation crossover value c⇥ obey a distinct

# of new citations in year t+1 = 

Variability in the citation life-cycle. To isolate the effect of author
reputation upon the citation dynamics of individual papers it is impor-
tant to first have an understanding of the general citation dynamics of
papers. To this end, we first present results on general citation dynam-
ics that justify the components of our final model which accounts for
the finite citation life time of a publication. However, in studying ci-
tation dynamics several additional specific observations can be made
regarding the relative obsolescence of high and low impact publica-
tions.

Important scientific discoveries can cause paradigm shifts and sig-
nificantly boost the reputation of scientists associated with the discov-
ery [18]. However, most publications are not seminal contributions
but rather incremental advances with relatively short-term relevance.
In general, this means that the long-term citation rate of individual
papers decays according to a characteristic time scale. The relation
between the decay time scale and the cumulative citation impact of
a publication remains poorly understood, especially at the disaggre-
gated level of individual publication portfolios. Hence, in this section
we analyze the dynamics of the citation trajectory �cp(⌧), the num-
ber of new citations received in paper year ⌧ , where ⌧ is the number
of years since the paper was first cited.

We analyze �cp(⌧) at two levels of aggregation: (i) For each
discipline, we calculate an averaged �cp(⌧) calculated by collecting
papers with similar total citation counts cp. To achieve a scaled trajec-
tory that is better suited for averaging we normalize each individual
�cp(⌧) by its peak citation value, �c

0

p(⌧) ⌘ �cp(⌧)/Max[�cp(⌧)].
The top panels in Fig. 2 show the characteristic citation trajectory
of papers belonging to each of the top 5 quintiles of the aggregate
citation distribution. Each curve represents the average trajectory
h�c

0

(⌧)i ⌘ N

�1
q

P
p �c

0

p(⌧) calculated from the Nq papers in quin-
tile q. (ii) For each career i, we calculate h�c

0

i(⌧)i by averaging over
groups of ranked citation sets within the publication portfolio. The
bottom panels in Fig. 2 show that even within top careers, there is a
significant variation in the publication life cycle.

At both levels of aggregation, the impact life cycle typically peaks
before paper age ⌧ ⇡ 5 years, except in cases where the paper is con-
ceivably ahead of its time and does not receive peak attention until
a later time (e.g., experimental validation of a previous theoretical
prediction, and vice versa). We define the half-life ⌧1/2 as the time to
reach half the peak citation rate, �c

0

(⌧1/2) = 1/2 in the decay phase.
Papers in the theoretical domains of mathematics and physics can have
extremely long ⌧1/2 > 40 years. Remarkably, some top mathematics
papers even have ⌧1/2 that span nearly the entire data sample dura-
tion 100 years for some papers, reflecting the foundational nature of
“progress by proof.” This is in contrast to top-cited cell biology pa-
pers in the last 50 years: even in the top 10% of most cited works
the value ⌧1/2 ⇡ 10 years, possibly reflecting a significantly higher
discovery rate, and in a related sense, a relatively faster obsolescence
rate.

Fig. 3(A) shows the scaling relation ⌧1/2 ⇠ c

⌦
p calculated for pa-

pers grouped into logarithmic bins of cp. Physics and biology differ
mainly for the highly cited papers, cp & 40, whereas mathematics
shows larger variation in ⌧1/2 per citation. For papers of varying im-
pact, the obsolescence rate can vary dramatically, and is quantified
by the ⌦ value which provides an approximate relation between cita-
tions and time. In mathematics ⌧1/2 / cp, indicating that the impact
is distributed roughly uniformly across time. However, for biology
papers the sub-linear relation with ⌦ ⇡ 0.30 indicates that for two
papers, one with twice the citation impact as the other, the more cited
paper gained twice the number of citations over a ⌧1/2 that was less
than twice as large as the ⌧1/2 of the less-cited paper. These differ-
ences in citation bursting across field are possibly related to the role
of bursty technological advancement, bursty funding initiatives, and
other social aspects of science that can give rise to non-linearities in
scientific advancement.

Patterns of growth for longitudinal reputation measures. Life-
cycle patterns of top scientists serve as a benchmarks characteristic
of sufficiently founded careers in that they are insignificantly affected
by negative productivity shocks across the career. Many top scien-
tists become directors of large labs, and so their creative endeavors
consist of parallel research efforts [19], where each production stream
requires a significant investment with uncertain “payoff ” and “payout
date”. Because of this uncertainty over the horizon of the investment,
especially in the context of finite lifetime of the scientist, theoretical
models predict a decrease in research productivity with age for scien-
tists who are more motivated by investment incentives as opposed to
problem-solving incentives [20]. These steadily increasing patterns
for top scientists suggest that the problem-solving attribute is a key
driver of extremely ambitious individuals. In this section we inves-
tigate the patterns of productivity and reputation growth across the
career, and use these patterns as statistical benchmarks for a career
portfolio model developed in the final section.

One of the most striking statistical patterns of all careers analyzed
in our top scientists dataset is the faster than linear growth in time,
both in cumulative publication number Ni(t) ⌘

Pt
t0=1 ni(t

0

) and
in cumulative citation count Ci(t) ⌘

PNi(t)
p=1 ci,p(t) for a large part

of a scientist’s “growth phase,” which we find to be ⇡ 30 years after
their first publication. Figures 3(B) and 3(C) show the characteristic
growth trajectories hN 0

(t)i ⇠ t

↵ and hC0

(t)i ⇠ t

⇣ , calculated by
an appropriate average over individual Ni(t) and Ci(t), respectively,
using arbitrary normalized ordinate units (see the methods described
in the SI) so that each longitudinal curve starts from the same point,
namely hN 0

(1)i = hC0

(1)i ⌘ 1. The growth trajectories are char-
acterized by superlinear algebraic growth, with ↵ & 1 and ⇣ > ↵

(values shown in Fig. 3). Individual exponents ↵i and ⇣i are also
calculated for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career in Ta-
bles S1–S9 of the SI. We averaged both ↵i and ⇣i within each dataset
and confirm that h↵ii ⇠= ↵, and h⇣ii ⇠= ⇣. Thus the aggregate pat-
terns hold at the individual scale. Figure 4 shows the evolution of the
publication portfolio quantified by the Zipf distribution of the papers
ranked in decreasing order ci(1) � ci(2) � · · · � ci(Ni) of rank r.
The curve ci(r) belongs to the class of the discrete generalized beta
distributions (DGBD), c(r) / r

��
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� . We use ⇣i and �i as
quantitative benchmarks to confirm that our stochastic model matches
to values observed for real careers [4].

Measuring the reputation effect. The interacting networks illus-
trated in Fig. 1 serve as a platform for reputation signaling, a process
used to overcome information asymmetries between scientists and
other academic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor reputation ef-
fects early in the career [23]. Nevertheless, because we analyze top
scientists, the signaling advantage they receive early in their careers
by working with prestigious mentors/coauthors should be negligible
over the long run [22]. Furthermore, by analyzing top scientists, we
reduce the compound reputation effect occurring when two or more
highly reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of these
scientists on the citation rate. Hence, we assume that a majority of
the reputation signal is attributable to the central scientist i. Also, by
analyzing top-cited cohorts, we can establish an upper bound to the
strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper impact,
we use a regression model that simultaneously accounts for three
factors: (i) the paper citation effect ⇧p(t) ⌘ [cp(t)]

⇡ , (ii) the life
cycle effect Ap(⌧) ⌘ exp[�⌧p/⌧ ], and (iii) the author reputation
effect Ri(t) ⌘ [Ci(t)]

⇢. Again, we note that the reputation factor
R(t) ⇡

P
j Rj should conceivably aggregate the cumulative repu-

tations measures of all coauthors j, however due to data limitations
requiring disambiguation and career data for all coauthors, we make
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Variability in the citation life-cycle. To isolate the effect of author
reputation upon the citation dynamics of individual papers it is impor-
tant to first have an understanding of the general citation dynamics of
papers. To this end, we first present results on general citation dynam-
ics that justify the components of our final model which accounts for
the finite citation life time of a publication. However, in studying ci-
tation dynamics several additional specific observations can be made
regarding the relative obsolescence of high and low impact publica-
tions.

Important scientific discoveries can cause paradigm shifts and sig-
nificantly boost the reputation of scientists associated with the discov-
ery [18]. However, most publications are not seminal contributions
but rather incremental advances with relatively short-term relevance.
In general, this means that the long-term citation rate of individual
papers decays according to a characteristic time scale. The relation
between the decay time scale and the cumulative citation impact of
a publication remains poorly understood, especially at the disaggre-
gated level of individual publication portfolios. Hence, in this section
we analyze the dynamics of the citation trajectory �cp(⌧), the num-
ber of new citations received in paper year ⌧ , where ⌧ is the number
of years since the paper was first cited.

We analyze �cp(⌧) at two levels of aggregation: (i) For each
discipline, we calculate an averaged �cp(⌧) calculated by collecting
papers with similar total citation counts cp. To achieve a scaled trajec-
tory that is better suited for averaging we normalize each individual
�cp(⌧) by its peak citation value, �c

0

p(⌧) ⌘ �cp(⌧)/Max[�cp(⌧)].
The top panels in Fig. 2 show the characteristic citation trajectory
of papers belonging to each of the top 5 quintiles of the aggregate
citation distribution. Each curve represents the average trajectory
h�c

0

(⌧)i ⌘ N

�1
q

P
p �c

0

p(⌧) calculated from the Nq papers in quin-
tile q. (ii) For each career i, we calculate h�c

0

i(⌧)i by averaging over
groups of ranked citation sets within the publication portfolio. The
bottom panels in Fig. 2 show that even within top careers, there is a
significant variation in the publication life cycle.

At both levels of aggregation, the impact life cycle typically peaks
before paper age ⌧ ⇡ 5 years, except in cases where the paper is con-
ceivably ahead of its time and does not receive peak attention until
a later time (e.g., experimental validation of a previous theoretical
prediction, and vice versa). We define the half-life ⌧1/2 as the time to
reach half the peak citation rate, �c

0

(⌧1/2) = 1/2 in the decay phase.
Papers in the theoretical domains of mathematics and physics can have
extremely long ⌧1/2 > 40 years. Remarkably, some top mathematics
papers even have ⌧1/2 that span nearly the entire data sample dura-
tion 100 years for some papers, reflecting the foundational nature of
“progress by proof.” This is in contrast to top-cited cell biology pa-
pers in the last 50 years: even in the top 10% of most cited works
the value ⌧1/2 ⇡ 10 years, possibly reflecting a significantly higher
discovery rate, and in a related sense, a relatively faster obsolescence
rate.

Fig. 3(A) shows the scaling relation ⌧1/2 ⇠ c

⌦
p calculated for pa-

pers grouped into logarithmic bins of cp. Physics and biology differ
mainly for the highly cited papers, cp & 40, whereas mathematics
shows larger variation in ⌧1/2 per citation. For papers of varying im-
pact, the obsolescence rate can vary dramatically, and is quantified
by the ⌦ value which provides an approximate relation between cita-
tions and time. In mathematics ⌧1/2 / cp, indicating that the impact
is distributed roughly uniformly across time. However, for biology
papers the sub-linear relation with ⌦ ⇡ 0.30 indicates that for two
papers, one with twice the citation impact as the other, the more cited
paper gained twice the number of citations over a ⌧1/2 that was less
than twice as large as the ⌧1/2 of the less-cited paper. These differ-
ences in citation bursting across field are possibly related to the role
of bursty technological advancement, bursty funding initiatives, and
other social aspects of science that can give rise to non-linearities in
scientific advancement.

Patterns of growth for longitudinal reputation measures. Life-
cycle patterns of top scientists serve as a benchmarks characteristic
of sufficiently founded careers in that they are insignificantly affected
by negative productivity shocks across the career. Many top scien-
tists become directors of large labs, and so their creative endeavors
consist of parallel research efforts [19], where each production stream
requires a significant investment with uncertain “payoff ” and “payout
date”. Because of this uncertainty over the horizon of the investment,
especially in the context of finite lifetime of the scientist, theoretical
models predict a decrease in research productivity with age for scien-
tists who are more motivated by investment incentives as opposed to
problem-solving incentives [20]. These steadily increasing patterns
for top scientists suggest that the problem-solving attribute is a key
driver of extremely ambitious individuals. In this section we inves-
tigate the patterns of productivity and reputation growth across the
career, and use these patterns as statistical benchmarks for a career
portfolio model developed in the final section.

One of the most striking statistical patterns of all careers analyzed
in our top scientists dataset is the faster than linear growth in time,
both in cumulative publication number Ni(t) ⌘
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) and
in cumulative citation count Ci(t) ⌘
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of a scientist’s “growth phase,” which we find to be ⇡ 30 years after
their first publication. Figures 3(B) and 3(C) show the characteristic
growth trajectories hN 0

(t)i ⇠ t

↵ and hC0
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⇣ , calculated by
an appropriate average over individual Ni(t) and Ci(t), respectively,
using arbitrary normalized ordinate units (see the methods described
in the SI) so that each longitudinal curve starts from the same point,
namely hN 0

(1)i = hC0

(1)i ⌘ 1. The growth trajectories are char-
acterized by superlinear algebraic growth, with ↵ & 1 and ⇣ > ↵

(values shown in Fig. 3). Individual exponents ↵i and ⇣i are also
calculated for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career in Ta-
bles S1–S9 of the SI. We averaged both ↵i and ⇣i within each dataset
and confirm that h↵ii ⇠= ↵, and h⇣ii ⇠= ⇣. Thus the aggregate pat-
terns hold at the individual scale. Figure 4 shows the evolution of the
publication portfolio quantified by the Zipf distribution of the papers
ranked in decreasing order ci(1) � ci(2) � · · · � ci(Ni) of rank r.
The curve ci(r) belongs to the class of the discrete generalized beta
distributions (DGBD), c(r) / r
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� . We use ⇣i and �i as
quantitative benchmarks to confirm that our stochastic model matches
to values observed for real careers [4].

Measuring the reputation effect. The interacting networks illus-
trated in Fig. 1 serve as a platform for reputation signaling, a process
used to overcome information asymmetries between scientists and
other academic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor reputation ef-
fects early in the career [23]. Nevertheless, because we analyze top
scientists, the signaling advantage they receive early in their careers
by working with prestigious mentors/coauthors should be negligible
over the long run [22]. Furthermore, by analyzing top scientists, we
reduce the compound reputation effect occurring when two or more
highly reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of these
scientists on the citation rate. Hence, we assume that a majority of
the reputation signal is attributable to the central scientist i. Also, by
analyzing top-cited cohorts, we can establish an upper bound to the
strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper impact,
we use a regression model that simultaneously accounts for three
factors: (i) the paper citation effect ⇧p(t) ⌘ [cp(t)]

⇡ , (ii) the life
cycle effect Ap(⌧) ⌘ exp[�⌧p/⌧ ], and (iii) the author reputation
effect Ri(t) ⌘ [Ci(t)]

⇢. Again, we note that the reputation factor
R(t) ⇡

P
j Rj should conceivably aggregate the cumulative repu-

tations measures of all coauthors j, however due to data limitations
requiring disambiguation and career data for all coauthors, we make
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Variability in the citation life-cycle. To isolate the effect of author
reputation upon the citation dynamics of individual papers it is impor-
tant to first have an understanding of the general citation dynamics of
papers. To this end, we first present results on general citation dynam-
ics that justify the components of our final model which accounts for
the finite citation life time of a publication. However, in studying ci-
tation dynamics several additional specific observations can be made
regarding the relative obsolescence of high and low impact publica-
tions.

Important scientific discoveries can cause paradigm shifts and sig-
nificantly boost the reputation of scientists associated with the discov-
ery [18]. However, most publications are not seminal contributions
but rather incremental advances with relatively short-term relevance.
In general, this means that the long-term citation rate of individual
papers decays according to a characteristic time scale. The relation
between the decay time scale and the cumulative citation impact of
a publication remains poorly understood, especially at the disaggre-
gated level of individual publication portfolios. Hence, in this section
we analyze the dynamics of the citation trajectory �cp(⌧), the num-
ber of new citations received in paper year ⌧ , where ⌧ is the number
of years since the paper was first cited.

We analyze �cp(⌧) at two levels of aggregation: (i) For each
discipline, we calculate an averaged �cp(⌧) calculated by collecting
papers with similar total citation counts cp. To achieve a scaled trajec-
tory that is better suited for averaging we normalize each individual
�cp(⌧) by its peak citation value, �c
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The top panels in Fig. 2 show the characteristic citation trajectory
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bottom panels in Fig. 2 show that even within top careers, there is a
significant variation in the publication life cycle.

At both levels of aggregation, the impact life cycle typically peaks
before paper age ⌧ ⇡ 5 years, except in cases where the paper is con-
ceivably ahead of its time and does not receive peak attention until
a later time (e.g., experimental validation of a previous theoretical
prediction, and vice versa). We define the half-life ⌧1/2 as the time to
reach half the peak citation rate, �c
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(⌧1/2) = 1/2 in the decay phase.
Papers in the theoretical domains of mathematics and physics can have
extremely long ⌧1/2 > 40 years. Remarkably, some top mathematics
papers even have ⌧1/2 that span nearly the entire data sample dura-
tion 100 years for some papers, reflecting the foundational nature of
“progress by proof.” This is in contrast to top-cited cell biology pa-
pers in the last 50 years: even in the top 10% of most cited works
the value ⌧1/2 ⇡ 10 years, possibly reflecting a significantly higher
discovery rate, and in a related sense, a relatively faster obsolescence
rate.

Fig. 3(A) shows the scaling relation ⌧1/2 ⇠ c
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pers grouped into logarithmic bins of cp. Physics and biology differ
mainly for the highly cited papers, cp & 40, whereas mathematics
shows larger variation in ⌧1/2 per citation. For papers of varying im-
pact, the obsolescence rate can vary dramatically, and is quantified
by the ⌦ value which provides an approximate relation between cita-
tions and time. In mathematics ⌧1/2 / cp, indicating that the impact
is distributed roughly uniformly across time. However, for biology
papers the sub-linear relation with ⌦ ⇡ 0.30 indicates that for two
papers, one with twice the citation impact as the other, the more cited
paper gained twice the number of citations over a ⌧1/2 that was less
than twice as large as the ⌧1/2 of the less-cited paper. These differ-
ences in citation bursting across field are possibly related to the role
of bursty technological advancement, bursty funding initiatives, and
other social aspects of science that can give rise to non-linearities in
scientific advancement.

Patterns of growth for longitudinal reputation measures. Life-
cycle patterns of top scientists serve as a benchmarks characteristic
of sufficiently founded careers in that they are insignificantly affected
by negative productivity shocks across the career. Many top scien-
tists become directors of large labs, and so their creative endeavors
consist of parallel research efforts [19], where each production stream
requires a significant investment with uncertain “payoff ” and “payout
date”. Because of this uncertainty over the horizon of the investment,
especially in the context of finite lifetime of the scientist, theoretical
models predict a decrease in research productivity with age for scien-
tists who are more motivated by investment incentives as opposed to
problem-solving incentives [20]. These steadily increasing patterns
for top scientists suggest that the problem-solving attribute is a key
driver of extremely ambitious individuals. In this section we inves-
tigate the patterns of productivity and reputation growth across the
career, and use these patterns as statistical benchmarks for a career
portfolio model developed in the final section.

One of the most striking statistical patterns of all careers analyzed
in our top scientists dataset is the faster than linear growth in time,
both in cumulative publication number Ni(t) ⌘
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(values shown in Fig. 3). Individual exponents ↵i and ⇣i are also
calculated for the Ni(t) and Ci(t) of each author, and they are listed
along with many other quantitative measures for each career in Ta-
bles S1–S9 of the SI. We averaged both ↵i and ⇣i within each dataset
and confirm that h↵ii ⇠= ↵, and h⇣ii ⇠= ⇣. Thus the aggregate pat-
terns hold at the individual scale. Figure 4 shows the evolution of the
publication portfolio quantified by the Zipf distribution of the papers
ranked in decreasing order ci(1) � ci(2) � · · · � ci(Ni) of rank r.
The curve ci(r) belongs to the class of the discrete generalized beta
distributions (DGBD), c(r) / r
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� . We use ⇣i and �i as
quantitative benchmarks to confirm that our stochastic model matches
to values observed for real careers [4].

Measuring the reputation effect. The interacting networks illus-
trated in Fig. 1 serve as a platform for reputation signaling, a process
used to overcome information asymmetries between scientists and
other academic agents [14, 21, 22]. We measure author reputation
by Ci(t), which possibly discounts the role of mentor reputation ef-
fects early in the career [23]. Nevertheless, because we analyze top
scientists, the signaling advantage they receive early in their careers
by working with prestigious mentors/coauthors should be negligible
over the long run [22]. Furthermore, by analyzing top scientists, we
reduce the compound reputation effect occurring when two or more
highly reputable scientists are coauthors on a publication, a scenario
where it may be difficult to estimate the differential impact of these
scientists on the citation rate. Hence, we assume that a majority of
the reputation signal is attributable to the central scientist i. Also, by
analyzing top-cited cohorts, we can establish an upper bound to the
strength of the reputation effect.

To measure the role of author reputation vis-à-vis paper impact,
we use a regression model that simultaneously accounts for three
factors: (i) the paper citation effect ⇧p(t) ⌘ [cp(t)]

⇡ , (ii) the life
cycle effect Ap(⌧) ⌘ exp[�⌧p/⌧ ], and (iii) the author reputation
effect Ri(t) ⌘ [Ci(t)]

⇢. Again, we note that the reputation factor
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P
j Rj should conceivably aggregate the cumulative repu-

tations measures of all coauthors j, however due to data limitations
requiring disambiguation and career data for all coauthors, we make
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highly-cited physicists

Author-specific factors matter!  !
There are important yet quantifiable  nuances to citation dynamics!!!

An excess citation !
rate above what 
you would expect 
from linear 
preferential 
attachment alone

Reputation Ci(t) is 
estimated by the 
total citations of 
the most highly 
cited coauthor 
(here assumed to 
be i)



Take home message:	


1) The reputation effect is 	


strong for papers not yet highly cited	


!
2) The citation rate of highly-cited 	


papers is largely independent of 	


the author reputation 

Author-specific features: πi, τi, ρi 5

TABLE I: Best-fit parameters for individual careers and the average values within disciplinary datasets. The three features of the citation model
are parameterized by �, the paper citation effect, ⇤ , the life-cycle effect, and ⇥, the reputation effect.

c(t� 1) < c� c(t� 1) ⇤ c�
Name �i ⇤ i ⇥i �i ⇤ i ⇥i

GOSSARD, AC 0.34± 0.027 4.92± 0.261 0.25± 0.008 0.80± 0.048 4.73± 0.184 0.09± 0.024

BARABÁSI, AL 0.42± 0.036 3.00± 0.155 0.29± 0.010 1.06± 0.016 3.65± 0.111 0.01± 0.011
Ave. ± Std. Dev. [A] 0.43± 0.14 5.67± 2.52 0.22± 0.06 0.96± 0.19 8.93± 4.09 �0.07± 0.11

BALTIMORE, D 0.32± 0.018 4.64± 0.148 0.28± 0.006 0.62± 0.047 5.92± 0.250 0.15± 0.026
LAEMMLI, UK 0.54± 0.036 5.09± 0.297 0.21± 0.014 1.09± 0.025 6.40± 0.255 �0.12± 0.019
Ave. ± Std. Dev. [D] 0.40± 0.14 6.64± 6.24 0.26± 0.05 0.99± 0.22 9.55± 26.30 �0.06± 0.14

SERRE, JP 0.33± 0.095 15.90± 3.724 0.14± 0.026 0.66± 0.065 20.50± 3.862 �0.03± 0.039
WILES, A 0.56± 0.208 5.23± 1.187 0.24± 0.052 0.70± 0.059 9.04± 0.633 0.10± 0.042
Ave. ± Std. Dev. [E] 0.27± 0.17 30.60± 56.80 0.14± 0.07 0.54± 0.25 21.40± 54.30 0.01± 0.11

scaling law that matches to sub-linear (though nearly linear)
preferential attachment model with ⇤ � 1. Based upon the as-
sessment of the growth dynamics elaborated in Figs. S8 and
S9 we choose the crossover value c� � 40 [A/B], c� � 100
[C], and c� � 20 [E]; the general results are not strongly de-
pendent on reasonable variations in our choice of c�. We next
analyze the reputation effect by comparing the growth dynam-
ics of papers with cp(⇧) ⇥ c� versus papers with cp(⇧) < c�.

We observe a robust pattern of role switching by author-
and paper-specific effects, namely ⌅(c < c�) > ⌅(c ⇥ c�)
and ⇤(c < c�) < ⇤(c ⇥ c�). These two inequalities indi-
cate that papers are initially boosted by author reputation to
ci,p ⌅ c�, after which the citation rate is sustained in large
by paper reputation. This constitutes one of our main results,
finding that c� serves as a “tipping point” for the strength of
the reputation effect. For example, for established physicists
in [A] and [B] we calculate ⌅(c < 40) ⌅ 0.2, ⌅(c ⇥ 40) ⌅ 0,
⇤(c < 40) ⌅ 0.4, and ⇤(c ⇥ 40) ⌅ 1. Table I shows the
⇤i, ⇧i, and ⌅i estimates, above and below c�, for the indi-
vidual careers highlighted in Figs. 2 and 4. Mathematicians
exhibit relatively high life-cycle exponents ⇧i as compared to
physicists and biologists. However, the reputation effect ⌅i

is less prominent in mathematics, possibly related to features
of small team sizes and axiomatic discoveries which may de-
crease the role of reputation effects in conveying prestige sig-
nals. The estimated model values are consistent when com-
paring between aggregated and individual career datasets. Ta-
bles S10–S13 list the regression values aggregating over all
careers in each dataset, and Tables S14 – S22 list the values
for all 450 scientists analyzed.

These findings show how reputation contributes to generate
the cumulative “rich-get-richer” processes predicted for scien-
tific careers [9], since it conveys unconditional citation boosts
for new papers of already established scientists. This feature
is anecdotally consistent with the common behavior of check-
ing author names in the preliminary steps of evaluating the
relevance of a newly-found paper.

E. Validation of the reputation model by simulating synthetic
Monte Carlo careers

We analyze four variants (i-iv) of a career growth model
using Monte Carlo (MC) evolution to simulate the dynamics
of �ci,p(t+1) for each paper p in each time period t of the ca-
reer of synthetic author i. With each variant we introduce pro-
gressively a new feature of paper citation trajectories. (i) We
begin with a basic Poisson null model for the unconditional
citation dynamics, �ci,p(t+1) ⇧ Poisson(⇥) where ⇥ is the
mean citation rate, independent of ⇧p and other author-specific
factors. (ii) The next model we simulate is a preferential at-
tachment model (PA model) in which �ci,p(t + 1) ⇧ ci,p(t).
(iii) In the third version of the model we incrementally modify
the PA model by adding a multiplicative exponential obsoles-
cence factor (PA-LC model) imposing the inherent life-cycle.
We then compare model (i-iii) with the reputation model (iv)
given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A
qualitative assessment of each model’s performance is as fol-
lows. The Poisson model (i) and the PA model (ii) fail to
reproduce the characteristic trajectories of real papers, since
there is a clear first-mover advantage [24] for the first pa-
pers published in the career; also the extreme acceleration of
Ci(t) in model (ii) does not appear to obey a proper power-law
growth.

Next we use quantitative patterns demonstrated for real ca-
reers in Figs. 2–4, and demonstrated more extensively in the
SI, as empirical benchmarks to distinguish models (iii) and
(iv). Comparing models (iii) and (iv), we confirm that the
reputation model (iv) satisfies the characteristics of the empir-
ical benchmark in all 3 graphical categories. We confirm for
model (iv), but not for model (iii), that there is a clear distinc-
tion when comparing the citation trajectories ⌃�c⇥(⇧p)⌥ of dif-
ferent sets of ranked papers. Furthermore, we quantitatively
confirm that C(t) ⇤ t� with 2 � � � 3. And for large t
we confirm that the rank-citation profile c(r, t) belongs to the
class of DGBD distributions. We provide more details about
our MC models and methods in the SI text.

the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c

⇥

⌘ 40 [A/B], c

⇥

⌘ 100 [C], and
c

⇥

⌘ 20 [E]; the general results are not strongly dependent on rea-
sonable variations in our choice of c

⇥

. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c

⇥

versus papers with cp(⌧) < c

⇥

.
We observe a robust pattern of role switching by author- and

paper-specific effects, namely ⇢(c < c

⇥

) > ⇢(c � c

⇥

) and
⇡(c < c

⇥

) < ⇡(c � c

⇥

). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c

⇥

⌘ 40 [A/B], c

⇥

⌘ 100 [C], and
c

⇥

⌘ 20 [E]; the general results are not strongly dependent on rea-
sonable variations in our choice of c

⇥

. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c

⇥

versus papers with cp(⌧) < c

⇥

.
We observe a robust pattern of role switching by author- and

paper-specific effects, namely ⇢(c < c

⇥

) > ⇢(c � c

⇥

) and
⇡(c < c

⇥

) < ⇡(c � c

⇥

). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c

⇥

⌘ 40 [A/B], c

⇥

⌘ 100 [C], and
c

⇥

⌘ 20 [E]; the general results are not strongly dependent on rea-
sonable variations in our choice of c

⇥

. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c

⇥

versus papers with cp(⌧) < c

⇥

.
We observe a robust pattern of role switching by author- and

paper-specific effects, namely ⇢(c < c

⇥

) > ⇢(c � c

⇥

) and
⇡(c < c

⇥

) < ⇡(c � c

⇥

). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c

⇥

⌘ 40 [A/B], c

⇥

⌘ 100 [C], and
c

⇥

⌘ 20 [E]; the general results are not strongly dependent on rea-
sonable variations in our choice of c

⇥

. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c

⇥

versus papers with cp(⌧) < c

⇥

.
We observe a robust pattern of role switching by author- and

paper-specific effects, namely ⇢(c < c

⇥

) > ⇢(c � c

⇥

) and
⇡(c < c

⇥

) < ⇡(c � c

⇥

). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c

⇥

⌘ 40 [A/B], c

⇥

⌘ 100 [C], and
c

⇥

⌘ 20 [E]; the general results are not strongly dependent on rea-
sonable variations in our choice of c

⇥

. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c

⇥

versus papers with cp(⌧) < c

⇥

.
We observe a robust pattern of role switching by author- and

paper-specific effects, namely ⇢(c < c

⇥

) > ⇢(c � c

⇥

) and
⇡(c < c

⇥

) < ⇡(c � c

⇥

). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
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. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c
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versus papers with cp(⌧) < c

⇥

.
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). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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TABLE I: Best-fit parameters for individual careers and the average values within disciplinary datasets. The three features of the citation model
are parameterized by �, the paper citation effect, ⇤ , the life-cycle effect, and ⇥, the reputation effect.

c(t� 1) < c� c(t� 1) ⇤ c�
Name �i ⇤ i ⇥i �i ⇤ i ⇥i

GOSSARD, AC 0.34± 0.027 4.92± 0.261 0.25± 0.008 0.80± 0.048 4.73± 0.184 0.09± 0.024

BARABÁSI, AL 0.42± 0.036 3.00± 0.155 0.29± 0.010 1.06± 0.016 3.65± 0.111 0.01± 0.011
Ave. ± Std. Dev. [A] 0.43± 0.14 5.67± 2.52 0.22± 0.06 0.96± 0.19 8.93± 4.09 �0.07± 0.11

BALTIMORE, D 0.32± 0.018 4.64± 0.148 0.28± 0.006 0.62± 0.047 5.92± 0.250 0.15± 0.026
LAEMMLI, UK 0.54± 0.036 5.09± 0.297 0.21± 0.014 1.09± 0.025 6.40± 0.255 �0.12± 0.019
Ave. ± Std. Dev. [D] 0.40± 0.14 6.64± 6.24 0.26± 0.05 0.99± 0.22 9.55± 26.30 �0.06± 0.14

SERRE, JP 0.33± 0.095 15.90± 3.724 0.14± 0.026 0.66± 0.065 20.50± 3.862 �0.03± 0.039
WILES, A 0.56± 0.208 5.23± 1.187 0.24± 0.052 0.70± 0.059 9.04± 0.633 0.10± 0.042
Ave. ± Std. Dev. [E] 0.27± 0.17 30.60± 56.80 0.14± 0.07 0.54± 0.25 21.40± 54.30 0.01± 0.11

scaling law that matches to sub-linear (though nearly linear)
preferential attachment model with ⇤ � 1. Based upon the as-
sessment of the growth dynamics elaborated in Figs. S8 and
S9 we choose the crossover value c� � 40 [A/B], c� � 100
[C], and c� � 20 [E]; the general results are not strongly de-
pendent on reasonable variations in our choice of c�. We next
analyze the reputation effect by comparing the growth dynam-
ics of papers with cp(⇧) ⇥ c� versus papers with cp(⇧) < c�.

We observe a robust pattern of role switching by author-
and paper-specific effects, namely ⌅(c < c�) > ⌅(c ⇥ c�)
and ⇤(c < c�) < ⇤(c ⇥ c�). These two inequalities indi-
cate that papers are initially boosted by author reputation to
ci,p ⌅ c�, after which the citation rate is sustained in large
by paper reputation. This constitutes one of our main results,
finding that c� serves as a “tipping point” for the strength of
the reputation effect. For example, for established physicists
in [A] and [B] we calculate ⌅(c < 40) ⌅ 0.2, ⌅(c ⇥ 40) ⌅ 0,
⇤(c < 40) ⌅ 0.4, and ⇤(c ⇥ 40) ⌅ 1. Table I shows the
⇤i, ⇧i, and ⌅i estimates, above and below c�, for the indi-
vidual careers highlighted in Figs. 2 and 4. Mathematicians
exhibit relatively high life-cycle exponents ⇧i as compared to
physicists and biologists. However, the reputation effect ⌅i

is less prominent in mathematics, possibly related to features
of small team sizes and axiomatic discoveries which may de-
crease the role of reputation effects in conveying prestige sig-
nals. The estimated model values are consistent when com-
paring between aggregated and individual career datasets. Ta-
bles S10–S13 list the regression values aggregating over all
careers in each dataset, and Tables S14 – S22 list the values
for all 450 scientists analyzed.

These findings show how reputation contributes to generate
the cumulative “rich-get-richer” processes predicted for scien-
tific careers [9], since it conveys unconditional citation boosts
for new papers of already established scientists. This feature
is anecdotally consistent with the common behavior of check-
ing author names in the preliminary steps of evaluating the
relevance of a newly-found paper.

E. Validation of the reputation model by simulating synthetic
Monte Carlo careers

We analyze four variants (i-iv) of a career growth model
using Monte Carlo (MC) evolution to simulate the dynamics
of �ci,p(t+1) for each paper p in each time period t of the ca-
reer of synthetic author i. With each variant we introduce pro-
gressively a new feature of paper citation trajectories. (i) We
begin with a basic Poisson null model for the unconditional
citation dynamics, �ci,p(t+1) ⇧ Poisson(⇥) where ⇥ is the
mean citation rate, independent of ⇧p and other author-specific
factors. (ii) The next model we simulate is a preferential at-
tachment model (PA model) in which �ci,p(t + 1) ⇧ ci,p(t).
(iii) In the third version of the model we incrementally modify
the PA model by adding a multiplicative exponential obsoles-
cence factor (PA-LC model) imposing the inherent life-cycle.
We then compare model (i-iii) with the reputation model (iv)
given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A
qualitative assessment of each model’s performance is as fol-
lows. The Poisson model (i) and the PA model (ii) fail to
reproduce the characteristic trajectories of real papers, since
there is a clear first-mover advantage [24] for the first pa-
pers published in the career; also the extreme acceleration of
Ci(t) in model (ii) does not appear to obey a proper power-law
growth.

Next we use quantitative patterns demonstrated for real ca-
reers in Figs. 2–4, and demonstrated more extensively in the
SI, as empirical benchmarks to distinguish models (iii) and
(iv). Comparing models (iii) and (iv), we confirm that the
reputation model (iv) satisfies the characteristics of the empir-
ical benchmark in all 3 graphical categories. We confirm for
model (iv), but not for model (iii), that there is a clear distinc-
tion when comparing the citation trajectories ⌃�c⇥(⇧p)⌥ of dif-
ferent sets of ranked papers. Furthermore, we quantitatively
confirm that C(t) ⇤ t� with 2 � � � 3. And for large t
we confirm that the rank-citation profile c(r, t) belongs to the
class of DGBD distributions. We provide more details about
our MC models and methods in the SI text.

Ceterus paribus: consider 2 
scientists, one with 10× as many total 
citations as the other,  C1(t) =10 C2(t) ,	



then for 2 relatively new papers

�c1,p(t+ 1)

�c2,p(t+ 1)
= 10⇢ = 1.66

The reputation premium:  A 66% increase 
in the citation rate for every 10-fold 

increase in reputation, Ci 	


!

Incentive for Quality > Quantity!	


Since ~ 10-15% of an author’s Ci comes 

from his/her highest-cited paper

the approximation R(t) ⇡ Ri(t). We perform a multiple regression
to estimate the ⇡, ⌧ , and ⇢ values which parameterize the citation
model,

�ci,p(t + 1) ⌘ ⌘ ⇥⇧p(t)⇥Ap(⌧)⇥Ri(t) , [1]

with the additional multiplicative noise term ⌘.
To test for basic mechanistic differences between the citation dy-

namics of highly-cited papers and less-cited papers, we first analyze
the relation between �cp(t+1) and cp(t) (corresponding to the limit
⌧ ! 1 and ⇢ = 0). This analysis shown in Fig. S8 indicates that
papers with citations above a slow but substantial citation crossover
value c

⇥

obey a distinct scaling law that matches to sub-linear (though
nearly linear) preferential attachment model with ⇡ . 1. Based upon
the assessment of the growth dynamics elaborated in Figs. S8 and S9
we choose the crossover value c

⇥

⌘ 40 [A/B], c

⇥

⌘ 100 [C], and
c

⇥

⌘ 20 [E]; the general results are not strongly dependent on rea-
sonable variations in our choice of c

⇥

. We next analyze the reputation
effect by comparing the growth dynamics of papers with cp(⌧) � c

⇥

versus papers with cp(⌧) < c

⇥

.
We observe a robust pattern of role switching by author- and

paper-specific effects, namely ⇢(c < c

⇥

) > ⇢(c � c

⇥

) and
⇡(c < c

⇥

) < ⇡(c � c

⇥

). These two inequalities indicate that
papers are initially boosted by author reputation to ci,p ⇡ c

⇥

, after
which the citation rate is sustained in large by paper reputation. This
constitutes one of our main results, finding that c

⇥

serves as a “tip-
ping point” for the strength of the reputation effect. For example, for
established physicists in [A] and [B] we calculate ⇢(c < 40) ⇡ 0.2,
⇢(c � 40) ⇡ 0, ⇡(c < 40) ⇡ 0.4, and ⇡(c � 40) ⇡ 1. Table
1 shows the ⇡i, ⌧i, and ⇢i estimates, above and below c

⇥

, for the
individual careers highlighted in Figs. 2 and 4. Mathematicians ex-
hibit relatively high life-cycle exponents ⌧i as compared to physicists
and biologists. However, the reputation effect ⇢i is less prominent
in mathematics, possibly related to features of small team sizes and
axiomatic discoveries which may decrease the role of reputation ef-
fects in conveying prestige signals. The estimated model values are
consistent when comparing between aggregated and individual career
datasets. Tables S10–S13 list the regression values aggregating over
all careers in each dataset, and Tables S14 – S22 list the values for all
450 scientists analyzed.

These findings show how reputation contributes to generate the
cumulative “rich-get-richer” processes predicted for scientific careers
[9], since it conveys unconditional citation boosts for new papers of
already established scientists. This feature is anecdotally consistent
with the common behavior of checking author names in the prelimi-
nary steps of evaluating the relevance of a newly-found paper.

Validation of the reputation model by simulating synthetic Monte
Carlo careers. We analyze four variants (i-iv) of a career growth
model using Monte Carlo (MC) evolution to simulate the dynam-
ics of �ci,p(t + 1) for each paper p in each time period t of the
career of synthetic author i. With each variant we introduce progres-
sively a new feature of paper citation trajectories. (i) We begin with
a basic Poisson null model for the unconditional citation dynamics,
�ci,p(t + 1) / Poisson(�) where � is the mean citation rate, inde-
pendent of ⌧p and other author-specific factors. (ii) The next model
we simulate is a preferential attachment model (PA model) in which
�ci,p(t + 1) / ci,p(t). (iii) In the third version of the model we
incrementally modify the PA model by adding a multiplicative ex-
ponential obsolescence factor (PA-LC model) imposing the inherent
life-cycle. We then compare model (i-iii) with the reputation model
(iv) given by Eq. 1.

Fig. 5 shows MC careers characteristic of each model. A qual-
itative assessment of each model’s performance is as follows. The
Poisson model (i) and the PA model (ii) fail to reproduce the char-
acteristic trajectories of real papers, since there is a clear first-mover
advantage [24] for the first papers published in the career; also the

extreme acceleration of Ci(t) in model (ii) does not appear to obey a
proper power-law growth.

Next we use quantitative patterns demonstrated for real careers
in Figs. 2–4, and demonstrated more extensively in the SI, as em-
pirical benchmarks to distinguish models (iii) and (iv). Comparing
models (iii) and (iv), we confirm that the reputation model (iv) satis-
fies the characteristics of the empirical benchmark in all 3 graphical
categories. We confirm for model (iv), but not for model (iii), that
there is a clear distinction when comparing the citation trajectories
h�c

0

(⌧p)i of different sets of ranked papers. Furthermore, we quan-
titatively confirm that C(t) ⇠ t

⇣ with 2 . ⇣ . 3. And for large t

we confirm that the rank-citation profile c(r, t) belongs to the class of
DGBD distributions. We provide more details about our MC models
and methods in the SI text.

Discussion
Social networks in science are characterized by heterogeneous struc-
ture [25] that provides opportunities for intellectual and social capital
investment at the individual level [26], and influence scientists’ re-
search strategies [21]. In this paper we analyze the role of reputation
on the micro-level processes underlying the dynamics of a scientist’s
research impact towards the broader goal to understand better career
growth and the increasingly difficult task of career evaluation [16].

Patterns of career growth are important for establishing (i) bench-
marks for career trajectory models, and (ii) a quantitative evaluation
framework that does not oversimplify or discount the complex so-
cial processes underlying scientific careers. Along these lines we
observe for top scientists a robust pattern of super-linear growth for
two cumulative reputation measures, Ni(t) and Ci(t), giving support
to amplifying social processes which sustain growth via coevolution
of scientific collaboration and output [6, 27, 28, 29]. In a scientific
system increasingly characterized by team endeavors, multiple levels
of hierarchy, and division of labor [30], it will be important to develop
both financial and prestige incentives that sustain lifetime productivity
for scientists at every level of the scientific enterprise.

As reputable teams start to dominate the scientific landscape, it
will further become important to disentangle the reputation effect as-
sociated with elite labs in order to assess individual contributions. To
this end, quantitative measures are becoming more prevalent in the
evaluation of projects, labs, and various hiring and promotion sce-
narios affecting individual careers in science. It is also increasingly
important to understand the relation between scientific inputs (money,
labor, knowledge, reputation, etc.) and scientific outputs [6, 15, 17],
the evolution of these dependencies across career stage, and the role
of career uncertainty [6]. Concerning careers, an institutional set-
ting based on quantitative appraisal that neglects these features may
paradoxically go against the goal of sustaining the careers of talented
and diligent young academics, especially considering the role that lab
and mentor reputation play in the hiring process. Indeed, our find-
ing of a crossover behavior around c

⇥

shows how young scientists
lacking reputation can be negatively affected by social stratification
in science, since there is a competitive advantage working with a pres-
tigious mentor which is countered with the possibility that it is not the
ideal mentor-advisee match. In light of the value of online visibility,
strategies of self-promotion may also emerge as scientists “game” the
system, which may be hard to disentangle from other dimensions of
science, such as the tendency for scientists to self-cite, possibly with
the intention of signaling reputation, when crossing disciplinary lines
[31]. Reputation will also become increasingly important in light of
the preferential treatment based on citation measures given to search
query results, e.g. Google Scholar, which may further strengthen the
reputation effect between paper and author.

Our framework motivates future research to inspire institutional
and funding body evaluation schemes to appropriately account for the
roles that reputation and social context play in science. For example,
our results can be used in support of the double-blind review system
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I) Measuring the duration Lij of the tie (time 
b/w 1st and last copublication)	


!
II) Measuring the intensity Kij of the tie 	


(# of copublications)	


!
III) Measuring the value Cij of the tie	


(citation impact)

Sir Andre K. Geim
# publications, Ni (2012) = 217 

Si = 303 coauthors	


The average copublication duration ⟨Li⟩ 

= 2.1 years, ⟨Ki⟩ = 3.7 pubs.

Ego collaboration network:  
quantifying dynamic & heterogenous patterns of 

collaboration within scientific careers

How important are academic “Life partners”? !
- Division/Diversity of labor!
- Risk/Reward sharing!
- Ethics of credit distribution &  free-riding

I, Grigorieva

K, Novoselov



1) high churning of new entrants (new ideas, new 
methods, new resources) correlates with higher 
productivity; however, it represents inefficiencies on 
the team-formation process and the career trajectory!!

2) The effect of team heterogeneity on productivity is 
positive indicating the benefits of efficient team 
management via hierarchy / mentoring!!

3) Research life-partners — “a scientific marriage”: The 
effect of strong ties on productivity is positive 
indicating the benefits of matching complementary 
capabilities and beneficial roles. Also points to the 
profit-sharing of a tit-for-tat publication strategy (free-
riding).

Quantifying the impact of weak, strong, and super ties in 
scientific careers (2015)  A. M. Petersen. Under Review

Sir Andre K. Geim
# publications, Ni (2012) = 217 

Si = 303 coauthors

Ego collaboration network:  
quantifying dynamic & heterogenous patterns of 

collaboration within scientific careers

I, Grigorieva

K, Novoselov



Spurious ties: ~2/3 collaborations have Lij < ⟨L⟩ ~ 5 years 
Lifelong ties: only ~1% last longer than ~ 4⟨L⟩ ~ 20 years
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Scaled collaboration duration, 

• The “invisible college” is held together by weak ties	


• Team formation/destruction costs are high; need to increase 

rates of meaningful and lasting collaboration	


•  Fractional counting could introduce a negative incentive to 

collaborate dragging on the innovative potential of science

3

the collection of the career data see the SI appendix and refs.
[27, 28] ). Hence, to account for censoring bias in collabo-
rations that are likely not finished, we do not include in our
analysis collaborations that were active within the final L

c

-
year period of analysis, where L

c

is an initial average L
ij

cal-
culated across all j for a given i. In this section only, we also
exclude spurious collaborations with L

ij

= 1, which account
for a remarkable 70 to 80 percent of all L

ij

values in each
dataset.

Hence, for each researcher we calculate a second hL
i

i value
which represents the mean L

ij

excluding those j with activity
in the final L

c

-year period and excluding all L
ij

= 1. The
L

ij

= 1 values were excluded since they can represent spuri-
ous features of coauthor lists that do not reflect actual social
interactions. In other words, applying these thresholds facili-
tates a better catalog of collaborations representing meaning-
ful face-to-face ties.

In each inset of Figure 2(A) we show the probability dis-
tribution P (hL

i

i). The mean values range from 4 to 6 years,
consistent with the typical duration of an early career phase
position (e.g. graduate school, postdoctoral, assistant profes-
sor). If we do include the L

ij

= 1 values, the hL
i

i instead
are in the range of 2 to 3 years. Interestingly, the top-cited
researcher subsets have slightly larger mean value than their
counterparts (difference in means T-test p-val. < 0.001 in
each comparison). This difference suggests that it is better
to invest in long-lasting collaborations rather than many short
“weak-tie” collaborations and that prestige attracts valuable
collaborators that are worth maintaining.

Figure 2(A) shows the probability distribution of scaled
longevity values, � ⌘ L

ij

/hL
i

i, which are better suited
for aggregating across research profiles with varing hL

i

i.
For each discipline, the log-logistic (Fisk) probability density
function (pdf)

P (�) =

(b/a)(�/a)

b�1

(1 + (�/a)

b

)

2
, (1)

provides a good fit to the empirical data over the entire range.
The Fisk pdf, a well-known survival analysis distribution, has
the property Median(�) = a, asymptotic power-law behavior
P (�) ⇠ �

�(b+1), and the convenient property that the Gini
inequality coefficient G(�) = 1/b. Since h�i ⌘ 1 by con-
struction, there exists a simple relation a = sin(⇡/b)/(⇡/b).
For each dataset we find b > 1, estimating the parameter
using a least-squares approach (Figure 2(A) shows a and b

values for each dataset). The corresponding hazard function,
representing the likelihood that the collaboration terminates
at any given �, is unimodal for b > 1. The peak hazard
value occurs for �

c

= a(b � 1)

1/b, found to be 0.94 (top
biology), 1.11 (other biology), 0.77 (top physics), and 1.08
(other physics). These values are around unity, meaning that a
tipping point in the sustainability of collaboration ties occurs
around L

ij

⇡ hL
i

i.
The longevity distribution P (�) is skewed to the right, with

approximately 63% of the data having values L
ij

< hL
i

i (cor-
responding to � < 1). Nevertheless, approximately 1% of
collaborations last longer than 4hL

i

i ⇡ 20 years.

FIG. 2: Universal log-logistic distribution of collaboration

longevity. (A) The probability distribution P (�) is right-skewed
and well-fit by the log-logistic pdf defined in Eq. (1). (Insets) The
probability distribution P (hLii) show that the characteristic collab-
oration length in physics and biology is typically between 2 and 6
years. (B) The decrease in the typical collaboration timescale, h�|ti,
reflects how careers transition from being pursuers of collaboration
opportunities to attractors of collaboration opportunities.

Figure 2(B) shows how the � values are distributed across
the career. If the � values were distributed homogeneously,
independent of t, then the curves would have the value
h�|ti ⇡ 1. Instead, we observe a negative trend in h�|ti
for each dataset (each datapoint is calculated from a 5-year
moving average centered around t, using a sliding window).
Moreover, the h�|ti values are consistently larger for the top
scientists, indicating that the relatively short L

ij

(correspond-
ing to � < 1) are more concentrated at larger t. This pattern
suggests that as reputation increases, access to short term
(weak-tie) collaboration opportunities also increases.

Measuring the collaboration life-cycle. The duration L

ij

lacks information on the intensity of activities within the col-
laboration. For example, it is possible that a relatively long
L

ij

produced only the minimum 2 publications. Hence, it is
also important to consider the collaboration intensity, K

ij

(t),
defined as the cumulative number of publications between i

and a given coauthor j up to career year t. The dynamic col-
laboration rate, �K

ij

(t) = K

ij

(t)�K

ij

(t�1), measures how
collaboration ties grow and decay over time, and are measured
in terms of ⌧ ⌘ ⌧

ij

, the number of years since the collabora-
tion was initiated.

Moreover, we define a collaboration trajectory that is bet-
ter suited for aggregating by normalizing each individual

0 1 2 3 4 5 610-4
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10-2

10-1

100
Highly cited physicists

67%

1%

0 1 2 3 4 5 6 710-4

10-3

10-2
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100 Biology

66%

1%

High collaboration turnover rate. Is this efficient?
Highly cited biologists



How does publication and authorship inflation impact 
the citation credit economy?

Partition credit equally into “shares” Reproduce (Multiply) credit for each author

Total credit           produced by all publications produced in year y!
using citation counts in year Y= y+Δy:

CT
y

CT
y,Y =

NyX

p=1

ap(cp,y,Y /ap)

=

N(y)X

p=1

cp,y,Y = Nyhcp,y,Y i

CT
y,Y =

NyX

p=1

apcp,y,Y

⇡ hap, yiNyhcp,y,Y i

using a crude approximation which 
also neglects correlations between 
team size and citations…..

- inflation in        the credit economy can have multiple sources (3 considered here)!

- no penalty for unethical coauthorship 
behaviors such as “free-riding” or “tit-
for-tat” partnering 

CT
y



How might fractional counting affect career citation measures  

Inequality and cumulative advantage in science 
careers: a case study of high-impact journals. A. M 
Petersen, O. Penner. EPJ Data Science 3, 24 (2014).

Methods for measuring the citations and 
productivity of scientists across time and 
discipline, A. M. Petersen, F. Wang, H. E. Stanley. 
Physical Review E 81, 036114 (2010). 

Partition credit equally into “shares”: Reproduce (Multiply) credit for each author:

C̃j
i =

Nj
iX

p=1

cp,y,Y
hcy,Y i

S̃j
i =

Nj
iX

p=1

1

ap

cp,y,Y
hcy,Y i

Total credit “issued” per paper =  Total credit “issued” per paper =  ap
cp,y,Y
hcy,Y i

cp,y,Y
hcy,Y i

i = author index!
p = paper index!
y = year paper p was published!
Y = citation data download year (>y), also referred to as the census year!
j = set of journals considered:  Nature, PNAS, and Science research articles !
!
Analyzed these journals over the years y =1958-2002 with Y=2009; roughly 200k papers, 
40k career disambiguated profiles; median coauthor size across papers = 5, mean # 
papers across profiles = 2.5

Crucial difference: 



Fractional citations Multiplicative citations

C̃j
i =

Nj
iX

p=1

cp,y,Y
hcy,Y i

S̃j
i =

Nj
iX

p=1

1

ap

cp,y,Y
hcy,Y i

10-3 10-2 10-1 100 101 102 103
10-6
10-5
10-4
10-3
10-2
10-1
100
101

total normalized citation shares, S
~

PD
F,

 P
(S

)~

Log-normal fit

1970-1980
1980-1990
1990-1995

Year cohort:

After controlling for censoring and cohort bias, Scientific 
careers exhibit a heavy-tailed “success” distribution that 
appears to be long-normally distributed for the bulk of 
the distribution.!!
Log-normal “size” distributions are indicative of Gibrat 
“proportional growth” processes. Moreover, the stability 
of the distribution for both measures indicates that the 
fractional citation method does not entirely disrupt the 
aggregate distribution of impact. 

Estimating the cumulative citation distribution across 
science careers

Inequality and cumulative advantage in science careers: a case study of high-impact journals

Alexander M. Petersen and Orion Penner
Laboratory for the Analysis of Complex Economic Systems and Laboratory of Innovation Management and Economics,

IMT Lucca Institute for Advanced Studies, Lucca 55100, Italy

Journal set j Cohort entry years G(C̃) f1%(C̃) G(S̃) f1%(S̃)

Nat./PNAS/Sci. 1970 – 1995 0.69 0.18 0.70 0.22

1970 – 1980 0.74 0.22 0.74 0.27

1980 – 1990 0.67 0.15 0.66 0.15

1990 – 1995 0.63 0.12 0.62 0.13

TABLE I: Summary of the Gini index (G) and top-1% share (f1%)
inequality measures calculated from the distributions of citation im-
pact, using both normalized citations (C̃) and normalized citation
shares (S̃) as the measure. The two G values are nearly the same,
while f1%(S̃) >

∼
f1%(C̃).



What is the potential impact of using 
fractional shares on the ranking of scientists?

|ranki(C̃)� ranki(S̃)|/
p
2rank shift = 

slightly!
sub-linear!
relation

However the noise in the subsequent 
ranking appears to be quite dependent on 

The new impact measure appears to be 
related by a quasi-linear relation

C̃j
i

ri(C̃)

ri(S̃)

S̃ / C̃� � . 1with

Leading to substantial rank reordering!



Is there team-size bias?

= 1.7d(C̃i, S̃i) = 6.4

d(ri(C̃), ri(S̃))

= 111

(139,83)

= 192

(295,88)

slightly !
sub-linear!
relation

nearly linear!
relation

Each researcher profile is 
characterized by the Mi , the 
median # of coauthors 
calculated from their Ni 
publications (in j )"
!
Separated profiles into two 
subsets, those with Mi ≥ 5 (big 
team) and Mi < 5  (small team)

As one might suspect, 
there is larger noise in 
the ranking of big-team 
collaborators

However, the mean 
rank-shift is significantly 
lower than when the 
two subsets were 
ranked together 

In real academic ranking scenarios, consider rankings within variable team-size groups?….



Quantitative measure of rank instability:!

Mean Kullback-Leibler relative entropy

= 4.0

d(x
i

, y

i

) ⌘ N

�1
authors

N

authorsX

i=1

⇣
x

i

� y

i

⌘
ln

⇣
x

i

/y

i

⌘

d(C̃i, S̃i) = 4.4 = 4.1

d(ri(C̃), ri(S̃))

= 364
= 615 = 709

(495,232) (826,404) (1060,356)

|ranki(C̃)� ranki(S̃)|/
p
2rank shift = 

sub-linear!
relation

sub-linear!
relation

sub-linear!
relation

Higher !
instability 
for the 
high-
ranking 
profiles in 
the !
younger!
cohort



Emergence of cumulative advantage in 
competitive arenas



For each career i we track his/her longitudinal publication rate by 
aggregating over publications in a specific set of high-impact journals

τi(n) is the waiting 
time between an 
author’s nth paper 	


and (n+1)th paper?

 By the 10th paper, 
the waiting time 

between publications 
has decreased by ~ 

factor of 2 from 
τi(1) !

 profiles with	


 L ≥ 5 and Np ≥ 10

How long does a researcher typically wait before 
his/her next publication in a prestigious journal?

(top 14)



t

�(1) �(2) �(3) �

1 2 3 4 �

�(n)

n

�(4)

51

citations c(2) c(3) c(4) c(5) c(n)

Inequality and cumulative advantage in science careers: a case study of high-impact journals

Alexander M. Petersen and Orion Penner
Laboratory for the Analysis of Complex Economic Systems and Laboratory of Innovation Management and Economics,

IMT Lucca Institute for Advanced Studies, Lucca 55100, Italy

For the long published version, complete with full analy-
sis, references, methods, and data summary, see:
AM Petersen, O Penner (2014) EPJ Data Science.
Send correspondence to: petersen.xander@gmail.com.

Analyzing a large data set of publications drawn from the
most competitive journals in the natural and social sciences
we show that research careers exhibit the broad distribu-
tions of individual achievement characteristic of systems in
which cumulative advantage plays a key role. While most re-
searchers are personally aware of the competition implicit in
the publication process, little is known about the levels of in-
equality at the researcher level.

Here we analyzed both productivity and impact mea-
sures for a large set of researchers publishing in high-impact
journals, accounting for censoring biases in the publication
data by using distinct researcher cohorts defined over non-
overlapping time periods. For each researcher cohort we cal-
culated Gini inequality coefficients, with average Gini values
around 0.48 for total publications and 0.73 for total citations.
For perspective, these observed values are well in excess of
the inequality levels observed for personal income in devel-
oping countries.

Investigating possible sources of this inequality, we iden-
tify two potential mechanisms that act at the level of the in-
dividual that may play defining roles in the emergence of the
broad productivity and impact distributions found in science.
First, we show that the average time interval between a re-
searcher’s successive publications in top journals decreases
with each subsequent publication. Second, after controlling
for the time dependent features of citation distributions, we
compare the citation impact of subsequent publications within
a researcher’s publication record. We find that as researchers
continue to publish in top journals, there is more likely to be a
decreasing trend in the relative citation impact with each sub-
sequent publication. This pattern highlights the difficulty of
repeatedly producing research findings in the highest citation-
impact echelon, as well as the role played by finite career and
knowledge life-cycles. It also points to the intriguing possibil-
ity of confirmation bias in the evaluation of science careers.

Our focal unit throughout the analysis is the scientific ca-
reer, even though we use publication and citation counts as
the central quantitative measure. Our data comprises 412,498
publications drawn from 23 individual high-impact journals
indexed by Thompson Reuters Web of Knowledge (TRWOK).
From these data we extracted the publication trajectory of
258,626 individual scientists, where each trajectory is defined
within a set of similar journals. The three principal journal
sets analyzed are Nature/PNAS/Science, a collection of 14
high-impact economics journals, and a collection of 3 pres-

tigious management science journals. For each analysis, we
carefully selected comparable sets of researcher profiles using
thresholds that controlled for possible censoring and cohort
biases in the data.

By analyzing researcher profiles within prestigious jour-
nals, we gather insights into the ascent of top scientists and
the operational value of these highly-selective competitive
arenas. Our analysis starts with the basic question: How do
such skewed achievement distributions emerge, even within
the highest-impact journals? To this end, we used the longi-
tudinal aspects of the data to quantify the role of cumulative
advantage in science careers, summarized in 3 parts:

(a) What are the levels of “inequality” within these high-
impact distributions? For example, for researchers who
had their first publication between 1970-1980, we calcu-
lated a Gini index G = 0.83 (economics) and G = 0.74
(Nat./PNAS/Sci.) and found that the top 1% of researchers
(comprised of 17 and 139 researchers, respectively) held a
significantly disproportionate share of 26% and 22% of the
total C̃ aggregated across all researchers in each distribution.
For perspective, these inequality levels are in excess of those
observed for personal income in developing countries. Never-
theless, analysis of G for different time periods indicates that
both productivity and impact equality is increasing over time.

(b) How long does a researcher typically wait before his/her
next high-profile publication? For each author, i, we define
a sequence of waiting times, ⌧i(n), for which the nth en-
try is the number of years between his/her publication n and
publication n + 1 in a given journal set. The longest wait-
ing time is typically between the first and second publica-
tion. For example, the average waiting time in both NEJM
and Nat./PNAS/Sci. is roughly h⌧(1)i ⇡ 4 years, whereas in
the biology journal Cell and the physics journal PRL the ini-
tial mean waiting times are closer to h⌧(1)i ⇡ 3 years. With
each successive publication, we found that h⌧(n)i decreases
significantly, so that by the 10th publication the waiting time
has decreased to roughly 1/2 of the initial waiting time ⌧(1).
This shifting towards smaller waiting times with increasing n
is further evident in the entire distribution of waiting times,
P (⌧(n)).

(c) Focusing only on publications within high-impact jour-
nals, are researcher’s later publications more or less cited than
their previous publications? To investigate the longitudinal
variation in the citation impact, we map the citation count
c j
i,p,y of the nth publication of researcher i, published in jour-

nal set j to a z-score,

zi(n) ⌘
ln c j

i,p,y(n)� hln cjyi
�[ln cjy]

, (1)

which allows for comparison across time since publications

How to account for cohort bias?

2

FIG. 1: Quantifying success in the Nature/PNAS/Science arena. (A) Skewed citation distributions. The citation measure C̃j
i is the total

number of normalized citations (each paper is normalized to the average citation value of publications from the same year) a given researcher
i gained from papers in the journal set j. We account for censoring bias by aggregating researchers into non-overlapping subsets depending
on when the researcher first published in the journal set. The P (C̃) are extremely skewed, ranging over 4 orders of magnitude, and are well-
fit by the log-normal distribution, except for in the lower tail. (B) Increasing publication rate. Shown are the complementary cumulative
probability distributions, P (� ⌧(n)), indicating the waiting time ⌧(n) between two successive publications, for n = 1...15. By n = 10 the
observed likelihood of waiting 3 or more years, P (� 3|n = 10), falls to roughly 0.2. (inset) The average waiting time, h⌧ j(n)i, decreases
significantly from 3.6 years for n = 1 to 1 year by n = 16. The values of h⌧ j(1)i = 3.6 yrs. Only research profiles with L � 5 years
and Np � 5 are included. (C,D) Mean citation impact decreases with increasing n. For scientists with between 11 and 20 publications
in the Nat./PNAS/Sci. journal set, we find a significant negative trend in hz̃(n)i (black curve) with each successive publication. We also
estimated the slope si of individual z̃i(n) trajectories. The empirical cumulative distribution P ( si) and the mean value hsii (vertical solid
blue line) are shifted towards negative si values. For comparison, we apply a shuffling technique to randomize z̃i(n) and then recalculate each
si. The P ( si) for shuffled data (dashed black curve, mean indicated by vertical dashed gray line) are centered around 0. We apply the
Kolmogorov-Smirnov test between the empirical and shuffled distributions, and the p-value confirms that the two sets of si values belong to
different distributions. In order to ensure that the relative citation impact zp of a given publication had sufficient time to stabilize within the
journal set dataset, only publications published prior to 2002 for Nat./PNAS/Sci. were analyzed (since the publication citation counts used
were current as of our 2009 census year). In order to reduce censoring bias arising form careers that started before the beginning of each data
sample, we only included trajectories with the first publication year yj

i,0 � 1970.

are measured relative to publications from the same publi-
cation year y. In order to account for author-specific het-
erogeneity before we aggregate citation trajectories across
scientists, we centered the z-score around the mean value
hzii ⌘ N�1

p

P
n=1 zi(n) calculated for the Np publications

of a given scientist i. As a result, we obtain the relative cita-
tion impact trajectory,

z̃i(n) ⌘ zi(n)� hzii . (2)

This normalization also helps in controlling for latent ef-
fects caused by disciplinary variation within the aggregated
economies and multidisciplinary natural science journal sets,
which could affect the overall citation potential of a paper over
time. Using these standardized z̃i(n) trajectories, we pooled
the data across scientists, noting that z̃i(n) is still measured in

normalized units of the standard deviation �ln c. For each jour-
nal set j we observed a negative trend in z̃i(n) for increasing
n, e.g. see Fig.1 (C,D).

This result is indicative of the complex prestige system in
science. Finite career and knowledge lifecycles, as well as
the intriguing possibility of identifying institutional confirma-
tion bias in the evaluation process of science careers, likely
play a role in this the decreasing trend in z̃i(n). This lat-
ter explanation represents a possibly counterproductive role
of cumulative advantage in science, since the publication of
a high-impact publication early in the career, which may or
may not be an appropriate predictor of sustainable impact in
the future, nevertheless appears to facilitate additional future
opportunities in these highly-competitive journals.

Are researcher’s later publications more or less 
cited than their previous publications?

Inequality and cumulative advantage in 
science careers: a case study of high-
impact journals. A. M Petersen, O. Penner. "
EPJ Data Science (2014).

c(1)

This decreasing impact pattern 
highlights the difficulty of repeatedly 
producing research findings in the 
highest citation-impact echelon, as 
well as the role played by finite 
career and knowledge life-cycles.

(top 14 = QJE,!
AER, JPE, …)



• Forward progress follows a stochastic “progress rate” g(x) 	



• Cumulative advantage: g(x) increases with career position x 

Quantitative and empirical demonstration of the Matthew effect in a

study of career longevity
Alexander M. Petersen1, Woo-Sung Jung1, Jae-Suk Yang2, H. Eugene Stanley1

1 Center for Polymer Studies and Department of Physics, Boston University, MA, USA
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Abstract

“One-hit wonders” and “Iron Horses”

Stochastic model for career progress: spatial Poisson process

The “Rich-get-richer” Matthew effect Career success metrics in sports

Decreasing inter-publication time !(n)
The Matthew effect refers to the adage written some two-thousand years ago in the Gospel of St.
Matthew: ``For to all those who have, more will be given". Even two millennia later, this idiom is
used by sociologists to qualitatively describe individual progress and the interplay between status
and reward. Quantitative studies of professional careers are traditionally limited by the difficulty in
measuring progress and the lack of data on individual careers. However, in some professions,
there are well-defined metrics that quantify career longevity, success, and prowess, which together
contribute to the overall success rating for an individual employee. Here we demonstrate  testable
evidence, inherent  in the remarkable statistical regularity of career longevity distributions, of the
age-old Matthew ``rich get richer"  effect, in which  longevity and past success lead to cumulative
advantage.  We develop an exactly solvable  stochastic model that quantitatively incorporates  the
Matthew  effect such that it can be validated in competitive professions. These results demonstrate
that statistical laws can exist at even the microscopic social level, where the collective behaviour of
individuals can lead to emergent phenomena. We test our model on the careers of 400,000
scientists using data from six high-impact journals. We further confirm our findings by testing the
model on the careers of more than 20,000 athletes in four sports leagues.
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We analyze the professional careers of:

• 400,000 scientists publishing in 6 high-impact journals: Nature, the Proceedings of the

National Academy of Science, Science, CELL, the New England Journal of Medicine,

and Physical Review Letters

• 20,000 professional athletes: Major League Baseball (1920-2004), Korean

Professional Baseball League 1982-2007, National Basketball Association 1946-2004,

English Premier League 1992-2007

Theoretical curves (solid green lines) derived from our stochastic model show excellent

agreement with empirical data. We define metrics for career longevity that are inherently

related to the time spent in the career, and according to the available data.

•  scientific longevity: x = y last - y first+1

 which is the time interval in years between a scientist’s first and last publication in a

given high-impact journal

• sports longevity: x = total number of in-game opportunities over the career

- Baseball: At-bats (AB), Innings Pitched in Outs (IPO)

- Basketball: minutes played

- Soccer: games played

We model progress in competitive professions as a random hopping process with two main ingredients:

• random forward progress up the career ladder

• random stopping times, terminating the career

We solve the corresponding master equation governing the evolution of P(x,t), the probability that an individual is at career

position x at time t. The progress rate parameter g(x) determines the relative difference in late-career progress versus

early-career progress. We choose a functional form for g(x) that increases with x, capturing the salient feature of the

Matthew effect that it becomes easier to make progress the further along is the career.

- ``For to all those who have, more will be given”
Matthew 25:29

For " > 1 :  P(x) is bimodal

For " < 1 :  P(x) is a truncated power-law,

We choose a functional form for the progress rate g(x) which is characterized by two parameters:

(1) " is a scaling exponent which quantifies the growth of g(x) for small values of x. For small x < xc  the progress rate g(x) ~ x"

Two different types of career longevity probability density function (pdf) emerge depending on the value of " :

(i) For convex " > 1 it is more difficult to make progress early in the career, and hence, P(x) is bimodal, with one group of stunted

careers grouped around small x < xc values and another group of successful careers grouped around larger x > xc values.

(ii) For concave " < 1 it is easier to make progress early in the career. This feature results in a remarkable statistical regularity

over several orders of magnitude captured by a truncated power-law with scaling exponent ".

(2)  xc is a career length scale which separates newcomers from veterans on the career ladder. The width xw of the “potential barrier”   

which newcomers must overcome scales as   xw / xc ! xc
-1/"

We observe " < 1 for all careers analyzed. The statistical regularity implies that the relative number of individuals with career longevity

x1and  x2 are given approximately by the ratio   P(x1)/P(x2) = (x2/x1)" which is quantified only by a scale-free ratio and the  scaling

exponent.

xw

Xc # 103

" = 0.40
In sports, successes are obtained in proportion to the total number of opportunities.

Hence, the probability density function P(z) of career successes z is also a truncated

power law with the same scaling exponent " as the corresponding longevity

distribution.

•  (A) MLB Baseball: xc
Hits ! 1200, xc

RBI ! 600.

  One hit wonders: 5% of all fielders 1920-Present finish career with only 1 hit !

3% of all pitchers finish career with less than an inning pitched!

•  (B) NBA Basketball: xc
Points ! 8000, xc

Rebounds ! 3500

Furthermore, we approximate P(z) with the Gamma pdf, and use the extreme
statistics of the Gamma distribution to estimate benchmarks which distinguish stellar
careers (e.g. Hall of Fame). See [1] and [2] for a discussion of establishing statistically
significant milestones for HR, K, RBI, and W in professional baseball.

See Ref. [1,2,4] for more details.

See Ref. [1] for more details.

See Ref. [3] for more details.
See Ref. [1] for more details.

.

.

.

See Ref. [1,2,3,4] for more details.

We analyze the inter-publication waiting time !(n) between an author’s paper n and

paper n+1 in a given journal. The quantity !(n) is inversely proportional to the

progress probability g(x) used in the stochastic model. We find that the average

inter-publication time ‹ !(n) › decreases with increasing number publications,

consistent with the Matthew effect. The values of ‹ !(1) › are 2.2 (CELL, PRE), 3.0

(Nature, PNAS, Science), and 3.5 (NEJM) years.

‹ !(n) › = 1 / g(n)

Lou Gehrig HOF plaque

g(x) = 1 / ⟨τ(x)⟩
The progress probability g is the 

inverse of the mean waiting time τ

n and the paper n+1. The values of !!"1#$ for each journal
are 2.2 "CELL, PRL#, 3.0 "Nature, PNAS, Science# and 3.5
"NEJM# years. The decrease in waiting time between publi-
cations is a signature of the cumulative advantage mecha-
nism qualitatively described in %19& and quantitatively ana-
lyzed in %16,18&. To avoid presenting statistical fluctuations
arising from the small size of data sets, we only present
!!"n#$ computed for data sets exceeding 75 observations.

To explain the steady decline of the curve for PRL we
mention that PRL has many authors with many articles
"n"100#. A possible explanation is that a significant number
of these authors are involved in large particle accelerator
experiments with multiple collaborating groups. These mul-
tilateral projects contribute significantly to the heavy tail ob-
served in the pdf of the number of authors per paper "Fig. 3#.
Hence, the decay in the curve for PRL which approaches
zero might be due to the project leaders at large experimental

institutions which produce over many years many significant
results per year. Furthermore, the organization of the curves
in Fig. 7 suggests that it is more difficult at the beginning of
a career to repeatedly publish in CELL than PRL. Reaching a
crossover point along the career ladder is a generic phenom-
enon observed in many professions. Accordingly, surmount-
ing this abstract crossover is motivated by significant per-
sonal incentives, such as salary increase, job security, and
managerial responsibility.

IV. DISCUSSION

Scientific careers share many qualities with other com-
petitive careers, such as the careers of professional sports
players, inventors, entertainers, actors, and musicians
%15,32,33&. Limited resources such as employment, salary,
creativity, equipment, events, data samples, and even indi-
vidual lifetime contribute to the formation of generic arenas
for competition. Hence, of interest here is the distribution of
success and productivity in high-impact journals which in
principle have high standards of excellence.

In science, there are unwritten guides to success requiring
ingenuity, longevity, and publication. We observe a quantifi-
able statistical regularity describing publication careers of
individual scientists across both time and discipline. Interest-
ingly, we find that the scaling exponent for individual papers
"#'3# is larger than the scaling exponent for total citation
shares "$'2.5# and the scaling exponent for total paper
shares "$'2.6#, which indicates that there is a higher fre-
quency of stellar careers than stellar papers. This is consis-
tent with the observation that a stellar career can result from
an arbitrary combination of stellar papers and consistent suc-
cess, as demonstrated in Table III. In all, the statistical regu-
larity found in the distributions for both citation shares and
paper shares lend naturally to methods based on extreme
statistics in order to distinguishing stellar careers. Such
methods have been developed for Hall of Fame candidacy in
baseball %16,34&, where statistical benchmarks are estab-
lished using the distribution of success.

Statistical physicists have long been interested in complex
interacting systems, and are beginning to succeed in describ-
ing social dynamics using models that were developed in the
context of concrete physical systems %35&. This study is in-
spired by the long term goal of using quantitative methods
from statistical physics to answer traditional questions rooted
in social science %36&, such as the nature of competition,
success, productivity, and the universal features of human
activity. Many studies begin as empirical descriptions, such
as the studies of common mobility patterns %37&, sexuality
%38,39&, and financial fluctuations %40&, and lead to a better
understanding of the underlying mechanics. It is possible that
the empirical laws reported here will motivate useful descrip-
tive theories of success and productivity in competitive en-
vironments.
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TABLE IV. Summary of paper shares for “completed” careers.
The value of the log-normal fit parameters % and & correspond to
the pdf before the cutoff value of Ps

c'2 paper shares. The values of
$ are calculated using a data values after the cutoff Ps

c(1 paper
shares, which corresponds to approximately 8% of the total data for
each journal.

Journal % & $

CELL −1.7'0.1 0.7'0.1 2.60'0.05
NEJM −1.7'0.1 1.0'0.1 2.60'0.02
Nature −1.3'0.1 1.0'0.1 2.74'0.05
PNAS −1.6'0.1 0.7'0.1 2.56'0.02
PRL −1.1'0.1 1.0'0.1 2.35'0.02
Science −1.4'0.1 0.9'0.1 2.61'0.02
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FIG. 7. "Color online# A decreasing waiting time !"n# between
publications in a given journal suggests that a longer publication
career "larger n# facilitates future publications, as predicted by the
Matthew effect. We plot !!"n#$ / !!"1#$, the average waiting time
!!"n#$ between paper n and paper n+1, rescaled by the average
waiting time between the first and second publication, !!"1#$. The
values of !!"1#$ are 2.2 "CELL, PRL#, 3.0 "Nature, PNAS, Science#,
and 3.5 "NEJM# years. Physical Review Letters exhibits a more
rapid decline in !"n#, reflecting the rapidity of successive publica-
tions "often by large high-energy experiment collaborations#, which
is possible in this high-impact letters journal.

PETERSEN, WANG, AND STANLEY PHYSICAL REVIEW E 81, 036114 "2010#

036114-8

career 	


position, x

Modeling the “Rich-get-richer” effect

Methods for measuring the citations and 
productivity of scientists across time and 
discipline, A. M. Petersen, F. Wang, H. E. Stanley. 
Phys. Rev. E 81, 036114 (2010). 

Quantitative and empirical demonstration of the 
Matthew effect in a study of career longevity. A. M. 
Petersen, W.-S. Jung, J.-S. Yang, H. E. Stanley. Proc. 
Natl. Acad. Sci. USA 108, 18-23 (2011).



Statistical regularities in the career longevity distribution

opportunities ~ time duration

• 130+ years of player statistics, 
~ 15,000 careers

Major League Baseball

• 3% of all fielders finish their 
career with ONE at-bat!	



• 3% of all pitchers finish their 
career with less than one 
inning pitched!

``One-hit wonders”	



``Iron horses”

• Lou Gehrig (the Iron Horse): NY 
Yankees (1923-1939)	



• Played in 2,130 consecutive games in 
15 seasons! 8001 career at-bats!	



• Career & life stunted by the fatal 
neuromuscular disease, amyotrophic 
lateral sclerosis (ALS), aka Lou 
Gehrig’s Disease
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Quantitative and empirical demonstration of the Matthew effect in a study of career longevity, 
A. M. Petersen, W.-S. Jung, J.-S. Yang, H. E. Stanley.  Proc. Natl. Acad. Sci. USA 108, 18-23 (2011).
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Sustainability of science careers
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Appraisal of prior work: How important is 
cumulative advantage in a competitive system?

I = finite labor	


   force size

Persistence and Uncertainty in the Academic Career,!
 A. M. Petersen, M. Riccaboni, H. E. Stanley, F. Pammolli. 
Proc. Natl. Acad. Sci. USA 109, 5213-5218 (2012).
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2) We run the Monte Carlo (MC) simulation for T ⇤ 100 time periods and all agents are by construction from the
same age cohort (born at same time).

3) Each time period corresponds to the allocation of P ⇤
�I

i=1 n0,i opportunities, sequentially one at a time, to
randomly assigned agents i, where n0,i ⇤ 1 is the potential production capacity of a given individual.

4) The assignment of a given opportunity is proportional to the time-dependent weight (capture rate) wi(t) of each
agent. Hence, the assignment of 1 opportunity to agent i at period t results in the production (achievement)
ni(t) to increase by one unit: ni(t)⌃ ni(t) + 1. In the next time period t + 1, we update the weight wi(t + 1)
to include the performance ni(t) in the current period.

B. Initial Condition

The initial weight at the beginning of the simulation is wi(t = 0) ⇤ nc for each agent i with nc ⇤ 1. The value
nc > 0 ensures that competitors begin with a non-zero production potential, and corresponds to a homogenous system
where all agents begin with the same production capacity. Hence, we do not analyze the more complicated model
wherein external factors (i.e. collaboration factors) can result in a heterogeneous production capacity across scientists.
By construction, each agent begins with one unit of achievement ni(t = 1) ⇤ 1.

C. System Dynamics

1) In each Monte Carlo step we allocate one opportunity to a randomly chosen individual i so that ni(t)⌃ ni(t)+1

2) The individual i is chosen with probability Pi(t) proportional to [wi(t)]�

Pi(t) =
wi(t)�

�I
i=1 wi(t)�

(S16)

where the value wi(t) is given by an exponentially weighted sum over the entire achievement history

wi(t) ⇤
t�1⇥

�t=1

ni(t��t)e�c�t . (S17)

The parameter c ⌅ 0 is a memory parameter which determines how the record of accomplishments in the past
a⇥ect the ability to obtain new opportunities in the current period, and therefore, the future. The limit c = 0
rewards long-term accomplishment by equally weighting the entire history of accomplishments. Conversely, when
c⇧ 1 the value of wi(t) is largely dominated by the performance ni(t�1) in the previous period, corresponding
to increased emphasis on short-term accomplishment in the immediate past. Intermediate values 0 < c < 1
weight more equally the immediate past and the entire history of accomplishment.

3) The exponent � determines how the relative ability to attract opportunities Pi/Pj = [wi(t)/wj(t)]� depends
on the weights wi(t) and wj(t) between two individuals i and j. The linear capture case follows from � = 1,
uniform capture � = 0, super linear capture � > 1, and sub-linear capture � < 1.

4) At the end of each time period, the weight wi(t) is recalculated and used for the entirety of the next MC time
period corresponding to the allocation of the next I ⇥ nc achievement opportunities.

D. Model Results

We simulate this system for a realistic labor force size I = 1000 with the assumption that in any given period,
an individual has the capacity for one unit of production (nc ⇤ 1). We evolve the system for T = 100 periods
corresponding to I⇥nc⇥T Monte Carlo time steps. The timescale T represents the (production) lifetime of individuals
with finite longevity. In this model we do not include exogenous shocks (career hazards) that can result in career
death [16]. Here we analyze four quantities:

1) The distribution P (N) of the total number of opportunities Ni(T ) ⇤
�T

t=1 ni(t) captured by agent i over the
course of the T� period simulation.

Achievement measured by 
(ex. publications) captured in time period t

Agent-based competition model with cumulative 
achievement appraisal (evaluation)

, the number of opportunities 



Appraising prior achievement

c → 0 : appraisal over all lifetime achievements ( ~ tenure system)	


c >1 : appraisal over only recent achievements (short-term contract system)

!
The cohort of I agents compete for a fixed number of opportunities in 
each period over a lifespan of  t = 1... T periods. 	



In each period, the capture rate of a given individual i is calculated by an 
appraisal of the achievement history	
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FIG. 3: Quantitative relations between career growth, career
risk, and collaboration e⇥ciency. The fluctuations in produc-
tion reflect the unpredictable horizon of “career shocks” which
can a�ect the ability of a scientists to access new creative op-
portunities. (A) Relation between average annual production
⇤ni⌅ and collaboration radius Si � Med[ki] shows a decreasing
marginal output per collaborator as demonstrated by sublin-
ear ⌅ < 1. Interestingly, dataset [A] scientists have on average
a larger output-to-input e⇥ciency. (B) The production fluc-
tuation scale ⇤i(r) is a quantitative measure for uncertainty

in academic careers, with scaling relation ⇤i(r) ⇥ S�/2
i . (C)

Over time, there is an increasing returns evident in the annual
production ni(t) since � > 1. Management, coordination, and
training ine⇥ciencies can result in a ⇥ < 1 corresponding to a
decreasing marginal return with each additional coauthor in-
put. The significantly larger ⇥ value for dataset [A] scientists
seems to suggest that managerial abilities related to output
e⇥ciency is a common attribute of top scientists.

D. A Proportional growth model for scientific
output

We develop a stochastic model as a heuristic tool to
better understand the e⇥ects of long-term versus short-
term contracts. In this competition model, opportunities
(i.e. new scientific publications) are captured according
to a general mechanism whereby the capture rate Pi(t)
depends on the appraisal wi(t) of an individual’s record
of achievement over a prescribed history. We define the
appraisal to be an exponentially weighted average over a
given individual’s history of production

wi(t) ⇥
t�1⇥

�t=1

ni(t��t)e�c�t , (8)

which is characterized by the appraisal horizon 1/c. We
use the value c = 0 to represent a long-term appraisal
(tenure) system and a value c ⇧ 1 to represent a short-
term appraisal system. Each agent i = 1...I simultane-
ously attracts new opportunities at a rate

Pi(t) =
wi(t)�

�I
i=1 wi(t)�

. (9)

until all P opportunities for a given period t are allo-
cated. We assume that each agent has the production
potential of one unit per period, and so the total number
of opportunities allocated per period P is equal to the
number of competing agents, P ⇥ I.

We use Monte Carlo (MC) simulation to analyze this
2-parameter model over the course of t = 1...T sequen-
tial periods. In each production period (representing a
timescale on the order of half a human year), a fixed
number of P production units are captured by the com-
peting agents. At the end of each period, we update each
wi(t) and then proceed to simulate the next preferential
capture period t + 1. Since Pi(t) depends on the relative
achievements of every agent, the relative competitive ad-
vantage of one individual over another is determined by
the parameter ⇤. In the SI Appendix text we elaborate
in more detail the results of our simulation of synthetic
careers dynamics. We vary ⇤ and c for a labor force of
size I ⇥ 1000 and maximum lifetime T ⇥ 100 periods as
a representative size and duration of a real labor cohort.
Our results are general, and for su⇤ciently large system
size, the qualitative features of the results do not depend
significantly on the choice of I or T .

The case with ⇤ = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are cap-
tured at a Poisson rate ⇥p = 1 per period. The results
of this model (see Fig. S13) shows that almost all ca-
reers obtain the maximum career length T with a typical
career trajectory exponent ⌥�i� ⌅ 1. Comparing to sim-
ulations with ⇤ > 0 and c ⇤ 0, the null model is similar
to a “long-term” appraisal system (c ⌃ 0) with sublin-
ear preferential capture (⇤ < 1). In such systems, the
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2) We run the Monte Carlo (MC) simulation for T ⇤ 100 time periods and all agents are by construction from the
same age cohort (born at same time).

3) Each time period corresponds to the allocation of P ⇤
�I

i=1 n0,i opportunities, sequentially one at a time, to
randomly assigned agents i, where n0,i ⇤ 1 is the potential production capacity of a given individual.

4) The assignment of a given opportunity is proportional to the time-dependent weight (capture rate) wi(t) of each
agent. Hence, the assignment of 1 opportunity to agent i at period t results in the production (achievement)
ni(t) to increase by one unit: ni(t)⌃ ni(t) + 1. In the next time period t + 1, we update the weight wi(t + 1)
to include the performance ni(t) in the current period.

B. Initial Condition

The initial weight at the beginning of the simulation is wi(t = 0) ⇤ nc for each agent i with nc ⇤ 1. The value
nc > 0 ensures that competitors begin with a non-zero production potential, and corresponds to a homogenous system
where all agents begin with the same production capacity. Hence, we do not analyze the more complicated model
wherein external factors (i.e. collaboration factors) can result in a heterogeneous production capacity across scientists.
By construction, each agent begins with one unit of achievement ni(t = 1) ⇤ 1.

C. System Dynamics

1) In each Monte Carlo step we allocate one opportunity to a randomly chosen individual i so that ni(t)⌃ ni(t)+1

2) The individual i is chosen with probability Pi(t) proportional to [wi(t)]�

Pi(t) =
wi(t)�

�I
i=1 wi(t)�

(S16)

where the value wi(t) is given by an exponentially weighted sum over the entire achievement history

wi(t) ⇤
t�1⇥

�t=1

ni(t��t)e�c�t . (S17)

The parameter c ⌅ 0 is a memory parameter which determines how the record of accomplishments in the past
a⇥ect the ability to obtain new opportunities in the current period, and therefore, the future. The limit c = 0
rewards long-term accomplishment by equally weighting the entire history of accomplishments. Conversely, when
c⇧ 1 the value of wi(t) is largely dominated by the performance ni(t�1) in the previous period, corresponding
to increased emphasis on short-term accomplishment in the immediate past. Intermediate values 0 < c < 1
weight more equally the immediate past and the entire history of accomplishment.

3) The exponent � determines how the relative ability to attract opportunities Pi/Pj = [wi(t)/wj(t)]� depends
on the weights wi(t) and wj(t) between two individuals i and j. The linear capture case follows from � = 1,
uniform capture � = 0, super linear capture � > 1, and sub-linear capture � < 1.

4) At the end of each time period, the weight wi(t) is recalculated and used for the entirety of the next MC time
period corresponding to the allocation of the next I ⇥ nc achievement opportunities.

D. Model Results

We simulate this system for a realistic labor force size I = 1000 with the assumption that in any given period,
an individual has the capacity for one unit of production (nc ⇤ 1). We evolve the system for T = 100 periods
corresponding to I⇥nc⇥T Monte Carlo time steps. The timescale T represents the (production) lifetime of individuals
with finite longevity. In this model we do not include exogenous shocks (career hazards) that can result in career
death [16]. Here we analyze four quantities:

1) The distribution P (N) of the total number of opportunities Ni(T ) ⇤
�T

t=1 ni(t) captured by agent i over the
course of the T� period simulation.

Achievement measured by , the number of opportunities captured  
in time period t

exponential 	


discount factor

{capture rate ∝

Appraisal 
timescale 1/c



Crowding out by “kingpins”

before reaching age 0.01T, and 25% of the labor population dies
before reaching age 0.02T (see SI Appendix: Table S1). Hence,
in model short contract systems, the longevity, output, and impact
of careers are largely determined by fluctuations and not by per-
sistence.

Fig. 4 shows the MC results for π ¼ 1. For c ≥ 1 we observe a
drastic shift in the career longevity distribution PðLÞ, which
becomes heavily right-skewed with most careers terminating ex-
tremely early. This observation is consistent with the predictions
of an analytically solvable Matthew effect model (16) which de-
monstrates that many careers have difficulty making forward pro-
gress due to the relative disadvantage associated with early career
inexperience. However, due to the nature of zero-sum competi-
tion, there are a few “big winners” who survive for the entire
duration T and who acquire a majority of the opportunities al-
located during the evolution of the system. Quantitatively, the
distribution PðNÞ becomes extremely heavy-tailed due to agents
with α > 2 corresponding to extreme accelerating career growth.
Despite the fact that all the agents are endowed initially with the
same production potential, some agents emerge as superstars
following stochastic fluctuations at relatively early stages of the
career, thus reaping the full benefits of cumulative advantage.

Discussion
An ongoing debate involving academics, university administra-
tion, and educational policy makers concerns the definition
of professorship and the case for lifetime tenure, as changes
in the economics of university growth have now placed tenure

under the review process (3, 6). Critics of tenure argue that te-
nure places too much financial risk burden on the modern com-
petitive research university and diminishes the ability to adapt to
shifting economic, employment, and scientific markets. To ad-
dress these changes, universities and other research institutes
have shifted away from tenure at all levels of academia in the last
thirty years towards meeting staff needs with short-term and non-
tenure track positions (3).

For knowledge intensive domains, production is characterized
by long-term spillovers both through time and through the knowl-
edge network of associated ideas and agents. A potential draw-
back of professions designed around short-term contracts is that
there is an implicit expectation of sustained annual production
that effectively discounts the cumulative achievements of the in-
dividual. Consequently, there is a possibility that short-term con-
tracts may reduce the incentives for a young scientist to invest in
human and social capital accumulation. Moreover, we highlight
the importance of an employment relationship that is able to
combine positive competitive pressure with adequate safeguards
to protect against career hazards and endogenous production un-
certainty an individual is likely to encounter in his/her career.

In an attempt to render a more objective review process
for tenure and other lifetime achievement awards, quantitative
measures for scientific publication impact are increasing in use
and variety (17–20, 24, 27, 46, 47). However, many quantifiable
benchmarks such as the h-index (17) do not take into account
collaboration size or discipline specific factors. Measures for
the comparison of scientific achievement should at least account
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Fig. 4. MC simulation of the linear preferential capture model (π ¼ 1) for varying contract length parametrized by c. We plot the probability distributions for
(i) Ni , the total number of opportunities captured by the end period T , (ii) the growth acceleration exponent αi , (iii) the single period growth fluctuation riðtÞ
including for comparison the Laplace (solid green) and Gaussian (dashed red) best-fit distributions calculated using the respective MLE estimator, and (iv) the
career longevity Li defined as the time difference between an agent’s first and last captured opportunity. Results for c → 0 systems shows that for a “long-term
appraisal” scenario careers are less vulnerable to low-production phases, and as a result, most agents sustain production throughout the career. Conversely,
results for c ≥ 1 systems show that for a “short-term appraisal” scenario the labor system is driven by fluctuations that can cause career “sudden death” for a
large fraction of the population. In this short-term appraisal model, there are typically a small number of agents who are able to capture the majority of the
production opportunities with remarkably accelerating career growth reflected by significantly large αi ≥ 1. Thus, a few “lucky” agents are able to survive the
initial fluctuations and end up dominating the system. In SI Appendix: and Figs. S12–S16, we further show that systems with increased levels of competition
(π > 1) mimic systems with short-term contracts, resulting in productivity “death traps” whereby most careers stagnate and terminate early.
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before reaching age 0.01T, and 25% of the labor population dies
before reaching age 0.02T (see SI Appendix: Table S1). Hence,
in model short contract systems, the longevity, output, and impact
of careers are largely determined by fluctuations and not by per-
sistence.

Fig. 4 shows the MC results for π ¼ 1. For c ≥ 1 we observe a
drastic shift in the career longevity distribution PðLÞ, which
becomes heavily right-skewed with most careers terminating ex-
tremely early. This observation is consistent with the predictions
of an analytically solvable Matthew effect model (16) which de-
monstrates that many careers have difficulty making forward pro-
gress due to the relative disadvantage associated with early career
inexperience. However, due to the nature of zero-sum competi-
tion, there are a few “big winners” who survive for the entire
duration T and who acquire a majority of the opportunities al-
located during the evolution of the system. Quantitatively, the
distribution PðNÞ becomes extremely heavy-tailed due to agents
with α > 2 corresponding to extreme accelerating career growth.
Despite the fact that all the agents are endowed initially with the
same production potential, some agents emerge as superstars
following stochastic fluctuations at relatively early stages of the
career, thus reaping the full benefits of cumulative advantage.

Discussion
An ongoing debate involving academics, university administra-
tion, and educational policy makers concerns the definition
of professorship and the case for lifetime tenure, as changes
in the economics of university growth have now placed tenure

under the review process (3, 6). Critics of tenure argue that te-
nure places too much financial risk burden on the modern com-
petitive research university and diminishes the ability to adapt to
shifting economic, employment, and scientific markets. To ad-
dress these changes, universities and other research institutes
have shifted away from tenure at all levels of academia in the last
thirty years towards meeting staff needs with short-term and non-
tenure track positions (3).

For knowledge intensive domains, production is characterized
by long-term spillovers both through time and through the knowl-
edge network of associated ideas and agents. A potential draw-
back of professions designed around short-term contracts is that
there is an implicit expectation of sustained annual production
that effectively discounts the cumulative achievements of the in-
dividual. Consequently, there is a possibility that short-term con-
tracts may reduce the incentives for a young scientist to invest in
human and social capital accumulation. Moreover, we highlight
the importance of an employment relationship that is able to
combine positive competitive pressure with adequate safeguards
to protect against career hazards and endogenous production un-
certainty an individual is likely to encounter in his/her career.

In an attempt to render a more objective review process
for tenure and other lifetime achievement awards, quantitative
measures for scientific publication impact are increasing in use
and variety (17–20, 24, 27, 46, 47). However, many quantifiable
benchmarks such as the h-index (17) do not take into account
collaboration size or discipline specific factors. Measures for
the comparison of scientific achievement should at least account
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Fig. 4. MC simulation of the linear preferential capture model (π ¼ 1) for varying contract length parametrized by c. We plot the probability distributions for
(i) Ni , the total number of opportunities captured by the end period T , (ii) the growth acceleration exponent αi , (iii) the single period growth fluctuation riðtÞ
including for comparison the Laplace (solid green) and Gaussian (dashed red) best-fit distributions calculated using the respective MLE estimator, and (iv) the
career longevity Li defined as the time difference between an agent’s first and last captured opportunity. Results for c → 0 systems shows that for a “long-term
appraisal” scenario careers are less vulnerable to low-production phases, and as a result, most agents sustain production throughout the career. Conversely,
results for c ≥ 1 systems show that for a “short-term appraisal” scenario the labor system is driven by fluctuations that can cause career “sudden death” for a
large fraction of the population. In this short-term appraisal model, there are typically a small number of agents who are able to capture the majority of the
production opportunities with remarkably accelerating career growth reflected by significantly large αi ≥ 1. Thus, a few “lucky” agents are able to survive the
initial fluctuations and end up dominating the system. In SI Appendix: and Figs. S12–S16, we further show that systems with increased levels of competition
(π > 1) mimic systems with short-term contracts, resulting in productivity “death traps” whereby most careers stagnate and terminate early.
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Our theoretical model suggests that	



short-term appraisal systems: 	



* can amplify the effects of competition and 
uncertainty making careers more vulnerable to early 
termination, not necessarily due to lack of individual 
talent and persistence, but because of random 
negative production shocks.	



* effectively discount the cumulative achievements of 
the individual.	


!
* may reduce the incentives for a young scientist to 
invest in human and social capital accumulation. 
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Question: Should a 
researcher’s entire 
portfolio of prior 
work be considered 
in evaluation? In 
other competitive 
professions, more 
recent 
accomplishments 
are move valuable 
than more distant 
ones (e.g. 
professional sports)
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FIG. 3: Quantitative relations between career growth, career
risk, and collaboration e⇥ciency. The fluctuations in produc-
tion reflect the unpredictable horizon of “career shocks” which
can a�ect the ability of a scientists to access new creative op-
portunities. (A) Relation between average annual production
⇤ni⌅ and collaboration radius Si � Med[ki] shows a decreasing
marginal output per collaborator as demonstrated by sublin-
ear ⌅ < 1. Interestingly, dataset [A] scientists have on average
a larger output-to-input e⇥ciency. (B) The production fluc-
tuation scale ⇤i(r) is a quantitative measure for uncertainty

in academic careers, with scaling relation ⇤i(r) ⇥ S�/2
i . (C)

Over time, there is an increasing returns evident in the annual
production ni(t) since � > 1. Management, coordination, and
training ine⇥ciencies can result in a ⇥ < 1 corresponding to a
decreasing marginal return with each additional coauthor in-
put. The significantly larger ⇥ value for dataset [A] scientists
seems to suggest that managerial abilities related to output
e⇥ciency is a common attribute of top scientists.

D. A Proportional growth model for scientific
output

We develop a stochastic model as a heuristic tool to
better understand the e⇥ects of long-term versus short-
term contracts. In this competition model, opportunities
(i.e. new scientific publications) are captured according
to a general mechanism whereby the capture rate Pi(t)
depends on the appraisal wi(t) of an individual’s record
of achievement over a prescribed history. We define the
appraisal to be an exponentially weighted average over a
given individual’s history of production

wi(t) ⇥
t�1⇥

�t=1

ni(t��t)e�c�t , (8)

which is characterized by the appraisal horizon 1/c. We
use the value c = 0 to represent a long-term appraisal
(tenure) system and a value c ⇧ 1 to represent a short-
term appraisal system. Each agent i = 1...I simultane-
ously attracts new opportunities at a rate

Pi(t) =
wi(t)�

�I
i=1 wi(t)�

. (9)

until all P opportunities for a given period t are allo-
cated. We assume that each agent has the production
potential of one unit per period, and so the total number
of opportunities allocated per period P is equal to the
number of competing agents, P ⇥ I.

We use Monte Carlo (MC) simulation to analyze this
2-parameter model over the course of t = 1...T sequen-
tial periods. In each production period (representing a
timescale on the order of half a human year), a fixed
number of P production units are captured by the com-
peting agents. At the end of each period, we update each
wi(t) and then proceed to simulate the next preferential
capture period t + 1. Since Pi(t) depends on the relative
achievements of every agent, the relative competitive ad-
vantage of one individual over another is determined by
the parameter ⇤. In the SI Appendix text we elaborate
in more detail the results of our simulation of synthetic
careers dynamics. We vary ⇤ and c for a labor force of
size I ⇥ 1000 and maximum lifetime T ⇥ 100 periods as
a representative size and duration of a real labor cohort.
Our results are general, and for su⇤ciently large system
size, the qualitative features of the results do not depend
significantly on the choice of I or T .

The case with ⇤ = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are cap-
tured at a Poisson rate ⇥p = 1 per period. The results
of this model (see Fig. S13) shows that almost all ca-
reers obtain the maximum career length T with a typical
career trajectory exponent ⌥�i� ⌅ 1. Comparing to sim-
ulations with ⇤ > 0 and c ⇤ 0, the null model is similar
to a “long-term” appraisal system (c ⌃ 0) with sublin-
ear preferential capture (⇤ < 1). In such systems, the

Discounting time in the evaluation process: Insights from our 
appraisal model applied to real careers

appraisal timescale = 1/c	


c → 0 : appraisal over all lifetime 
achievements ( ~ tenure system)	


c ≥1 : appraisal over only recent 
achievements (short-term contract 
system)
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FIG. 3: Quantitative relations between career growth, career
risk, and collaboration e⇥ciency. The fluctuations in produc-
tion reflect the unpredictable horizon of “career shocks” which
can a�ect the ability of a scientists to access new creative op-
portunities. (A) Relation between average annual production
⇤ni⌅ and collaboration radius Si � Med[ki] shows a decreasing
marginal output per collaborator as demonstrated by sublin-
ear ⌅ < 1. Interestingly, dataset [A] scientists have on average
a larger output-to-input e⇥ciency. (B) The production fluc-
tuation scale ⇤i(r) is a quantitative measure for uncertainty

in academic careers, with scaling relation ⇤i(r) ⇥ S�/2
i . (C)

Over time, there is an increasing returns evident in the annual
production ni(t) since � > 1. Management, coordination, and
training ine⇥ciencies can result in a ⇥ < 1 corresponding to a
decreasing marginal return with each additional coauthor in-
put. The significantly larger ⇥ value for dataset [A] scientists
seems to suggest that managerial abilities related to output
e⇥ciency is a common attribute of top scientists.

D. A Proportional growth model for scientific
output

We develop a stochastic model as a heuristic tool to
better understand the e⇥ects of long-term versus short-
term contracts. In this competition model, opportunities
(i.e. new scientific publications) are captured according
to a general mechanism whereby the capture rate Pi(t)
depends on the appraisal wi(t) of an individual’s record
of achievement over a prescribed history. We define the
appraisal to be an exponentially weighted average over a
given individual’s history of production

wi(t) ⇥
t�1⇥

�t=1

ni(t��t)e�c�t , (8)

which is characterized by the appraisal horizon 1/c. We
use the value c = 0 to represent a long-term appraisal
(tenure) system and a value c ⇧ 1 to represent a short-
term appraisal system. Each agent i = 1...I simultane-
ously attracts new opportunities at a rate

Pi(t) =
wi(t)�

�I
i=1 wi(t)�

. (9)

until all P opportunities for a given period t are allo-
cated. We assume that each agent has the production
potential of one unit per period, and so the total number
of opportunities allocated per period P is equal to the
number of competing agents, P ⇥ I.

We use Monte Carlo (MC) simulation to analyze this
2-parameter model over the course of t = 1...T sequen-
tial periods. In each production period (representing a
timescale on the order of half a human year), a fixed
number of P production units are captured by the com-
peting agents. At the end of each period, we update each
wi(t) and then proceed to simulate the next preferential
capture period t + 1. Since Pi(t) depends on the relative
achievements of every agent, the relative competitive ad-
vantage of one individual over another is determined by
the parameter ⇤. In the SI Appendix text we elaborate
in more detail the results of our simulation of synthetic
careers dynamics. We vary ⇤ and c for a labor force of
size I ⇥ 1000 and maximum lifetime T ⇥ 100 periods as
a representative size and duration of a real labor cohort.
Our results are general, and for su⇤ciently large system
size, the qualitative features of the results do not depend
significantly on the choice of I or T .

The case with ⇤ = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are cap-
tured at a Poisson rate ⇥p = 1 per period. The results
of this model (see Fig. S13) shows that almost all ca-
reers obtain the maximum career length T with a typical
career trajectory exponent ⌥�i� ⌅ 1. Comparing to sim-
ulations with ⇤ > 0 and c ⇤ 0, the null model is similar
to a “long-term” appraisal system (c ⌃ 0) with sublin-
ear preferential capture (⇤ < 1). In such systems, the
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c → 0 : appraisal over all lifetime 
achievements ( ~ tenure system)	


c ≥1 : appraisal over only recent 
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system)
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(in the direction of 
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appraisal systems
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for production spillovers in the 5–8% decrease in output
by scientists who were close collaborators with a “super-
star” scientists who died suddenly [28].

We now formalize the quantitative link between scien-
tific collaboration [38, 39] and career growth given by the
size-variance scaling relation in Eq. [5] visualized in the
scatter plot in Fig. 3(B). Using ordinary least squares
(OLS) regression of the data on log-log scale, we cal-
culate ⌃/2 ⌃ 0.40 ± 0.03 (R = 0.77) for dataset [A],
⌃/2 ⌃ 0.22± 0.04 (R = 0.51) [B], and ⌃/2 ⌃ 0.26± 0.05
(R = 0.45) [C]. Interdependent tasks characteristic of
group collaborations typically involve partially overlap-
ping e⇥orts. Hence, the empirical ⌃ values are signifi-
cantly less than the value ⌃ = 1 that one would expect
from the sum of Si independent random variables with
approximately equal variance V . Collectively, these em-
pirical evidences serve as coherent motivations for the the
preferential capture growth model that we propose in the
following section.

Alternatively, it is also possible to estimate ⌃ using
the relation between the average annual production ↵ni�
and the collaboration radius Si. The input-output re-
lation ↵ni� ⇧ S⇤

i quantifies the collaboration e⇧ciency,
with ⌃ = 0.74 ± 0.04 (R = 0.87) for dataset [A] and
⌃ = 0.25±0.04 (R = 0.37) for dataset [B]. If the autocor-
relation between sequential production values ni(t) and
ni(t + 1) is relatively small, then we expect the scaling
exponents calculated for ↵ni� and ⇧2

i (r) to be approxi-
mately equal. This result follows from considering ri(t)
as the convolution of an underlying production distribu-
tion Pi(n) for each scientist that is approximately stable.
Interestingly, the larger ⌃ values calculated for dataset
[A] scientists suggests that prestige is related to the in-
creasing returns in the scientific production function [45].

Next we use an alternative method to estimate the
annual collaboration e⇧ciency by relating the number
of publications ni(t) in a given year to the number of
distinct coauthors ki(t) over the same year. We use a
single-factor production function,

ni(t) ⌃ qi[ki(t)]�i , (7)

to quantify the relation between output and labor in-
puts with a scaling exponent ⇥i. We estimate qi and
⇥i for each author using OLS regression, and define the
normalized output measure Qi  ni(t)/ki(t)�i using the
best-fit qi and ⇥i values calculated for each scientist i.
Fig. 3(C) shows the e⇧ciency parameter ⇥ calculated
by aggregating all careers in each dataset, and indicates
that this aggregate ⇥ is approximately equal to the av-
erage ↵⇥i� calculated from the ⇥i values in each career
dataset: ⇥ = 0.68 ± 0.01 [A], ⇥ = 0.52 ± 0.01 [B], and
⇥ = 0.51± 0.02 [C]. Furthermore, the ⌃ and ⇥ values are
approximately equal, which is not surprising, since both
scaling exponents are e⇧ciency measures that relate the
scaling relation of output ni(t) per input ki(t).

D. A Proportional growth model for scientific
output

We develop a stochastic model as a heuristic tool to
better understand the e⇥ects of long-term versus short-
term contracts. In this competition model, opportunities
(i.e. new scientific publications) are captured according
to a general mechanism whereby the capture rate Pi(t)
depends on the appraisal wi(t) of an individual’s record
of achievement over a prescribed history. We define the
appraisal to be an exponentially weighted average over a
given individual’s history of production

wi(t) ⇤
t�1⇥

�t=1

ni(t��t)e�c�t , (8)

which is characterized by the appraisal horizon 1/c. We
use the value c = 0 to represent a long-term appraisal
(tenure) system and a value c ⌥ 1 to represent a short-
term appraisal system. Each agent i = 1...I simultane-
ously attracts new opportunities at a rate

Pi(t) =
wi(t)⇥

�I
i=1 wi(t)⇥

. (9)

until all P opportunities for a given period t are cap-
tured. We assume that each agent has the production
potential of one unit per period, and so the total number
of opportunities distributed per period P is equal to the
number of competing agents, P ⇤ I.

We use Monte Carlo (MC) simulation to analyze this
2-parameter model over the course of t = 1...T sequential
periods. In each production period (i.e. representing a
characteristic time to publication), a fixed number of P
production units are captured by the competing agents.
At the end of each period, we update each wi(t) and then
proceed to simulate the next preferential capture period
t+1. Since Pi(t) depends on the relative achievements of
every agent, the relative competitive advantage of one in-
dividual over another is determined by the parameter ⌅.
In the SI Appendix text we elaborate in more detail the
results of our simulation of synthetic careers dynamics.
We vary ⌅ and c for a labor force of size I ⇤ 1000 and
maximum lifetime T ⇤ 100 periods as a representative
size and duration of a real labor cohort. Our results are
general, and for su⇧ciently large system size, the quali-
tative features of the results do not depend significantly
on the choice of I or T .

The case with ⌅ = 0 corresponds to a random capture
model that has (i) no appraisal and (ii) no preferential
capture. Hence, in this null model, opportunities are
captured at a Poisson rate ⇤p = 1 per period. The results
of this model (see Fig. S13) shows that almost all careers
obtain the maximum career length T with a typical career
trajectory exponent ↵�i� ⌃ 1. Comparing to simulations
with ⌅ > 0 and c ⌅ 0, the null model is similar to a
“long-term” appraisal system (c � 0) with sub-linear
preferential capture (⌅ < 1). In such systems, the long-
term appraisal timescale averages out fluctuations, and
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Inequality in science careers

The h-index distribution derived from the full Web of Science citation index: 
6,498,286 research profiles

Exploiting citation networks for large-scale author name disambiguation. !
C. Schulz, A. Mazloumian, A. M. Petersen, O. Penner, D. Helbing. "
EPJ Data Science (2014)
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Journal set j Cohort entry years G(C̃) f1%(C̃) G(Np) f1%(Np)

Economics 1970 – 1995 0.80 0.23 0.54 0.09

1970 – 1980 0.83 0.26 0.56 0.10

1980 – 1990 0.79 0.21 0.55 0.09

1990 – 1995 0.74 0.19 0.47 0.07

Nat./PNAS/Sci. 1970 – 1995 0.69 0.18 0.46 0.10

1970 – 1980 0.74 0.22 0.53 0.12

1980 – 1990 0.67 0.15 0.45 0.08

1990 – 1995 0.63 0.12 0.35 0.06

Table 2 Summary of the Gini index (G) and top-1% share (f1%) inequality measures calculated
from the distributions of citation impact (C̃) and productivity (Np) for the cohorts of scientists
whose first publication occurred in the indicated time intervals.

the lower bound of C̃ arising from variability in the value of hcjY (y)i. Moreover, the

poor fit for small C̃ further indicates that the aggregate empirical distributions are

likely mixtures of underlying log-normal distributions with slightly varying shape

and location parameters.

For example, in the 1980-1990 Economics cohort in Fig. 2(A) we calculate µ = 0.23

and �LN = 1.53 and for the 1980-1990 Nat./PNAS/Sci. cohort in Fig. 2(B) we

calculate µ = 0.30 and �LN = 1.25. For contrast, the subset of Nat./PNAS/Sci.

scientists in Fig. 2(C) with L � 11 (with hLi = 20, hNpi = 6.8 and hC̃i = 8.3) have

parameters µ = 1.31 and �LN = 1.26. These values can be used to model the growth

of C̃ using Gibrat’s stochastic (proportional) growth model, �C̃t = C̃t�1(1 + ⌘),

where ⌘ is white noise with mean and standard deviation depending on the log-

normal counterparts, µ and �LN . The limiting distribution of this multiplicative

process is the log normal distribution (see [40] for recent empirical and theoretical

results on firm growth that provides an appropriate starting point for the modeling

of researchers’ publication portfolios as companies in the small size limit).

To provide additional intuition regarding the level of “inequality” within these ci-

tation distributions, we calculated the Gini index G as well as the citation share f1%
of the top 1% of researchers in each P (C̃). For example, for the 1970-1980 cohort

we observe G = 0.83 (economics) and G = 0.74 (Nat./PNAS/Sci.) and found that

the top 1% of researchers (comprised of 17 and 139 researchers, respectively) held

a significantly disproportionate share of 26% and 22% of the total C̃ aggregated

across all researchers in each distribution. Table 2 shows the G(C̃) and f1%(C̃) for

each cohort group, which indicate for both journal sets a decreasing trend in the

citation inequality over time. We note that our calculations do not control for the

increasing prevalence of large collaborations in science [3]. Therefore, because there

are correlations between the number of coauthors and the average citations a pub-

lication receives [22], and because we didn’t control for multiple counting of single

publications in the calculation of the total C̃, it is di�cult to assess whether the dif-

ference between the inequality values calculated for economics (where coauthorship

e↵ect is weak because the number of coauthors is typically small) and for natural

sciences is attributable to this feature of the data.

For comparison, a recent analysis of US research funding at the institutional level

provides a di↵erent picture, indicating a slow but steady increase in the Gini index

Citation inequality levels are high, but over time, science appears 
to becoming more equitable!  (**Possibly a collaboration effect)

Gini index and top-1% share of total citations in high-impact journals 

Interestingly, this story seems to be opposite of what has been observed in a recent 
analysis of US research institute funding, which indicates a slow but steady increase in 
the G across U.S. universities over the last 20 years, with current estimates of the Gini 
inequality index for university expenditure around G ≈ 0.8 (Xie, Science, 2014).  !
For comparison, the 2010 U.S. income Gini coefficient was G = 0.4, and the top 1% share of 
individual income (USA) has increased from roughly 10% to 20% over the last half century.

Decreasing 
levels of !
inequality!
over time



1. How can we model the feedback of bibliometrics (IF) on 
scientists' (career, journal) decisions?!

!
!
!
!
!
!
!
!
!
2. Is fractional counting a solution to better capture the 

contribution of individuals?!
!
!
!
!
!

Reputation, and other author-specific factors (age-cohort, collaboration 
style, etc.) matter. Even small differences can amplify over a career, 
resulting in a significant cumulative advantage.!
!
Data-driven stochastic models that use empirical statistical patterns as 
benchmarks can be used to develop bibliometric indicators that (i) 
properly account for heterogeneity across careers and (ii) control for 
the growth (inflation) of science.

Indeed, fractional counting controls for paradigm shifts in the 
prevalence and role of teamwork on science careers and evaluation. 
However, the fractional counting method should not have the 
unintended consequence of dis-incentivizing collaboration.!
!
Also, it should be known if the fractional counting introduces size-
dependent bias — according to rank or collaboration style — by 
considering both the structural and dynamical aspects of collaboration.
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Title: Quantifying growth trends in science careers with application to bibliometric evaluation	

!
Abstract: Research does not produce itself. Instead, there are idiosyncratic individuals involved, 
characterized by diverse backgrounds, interests, behaviors, strategies, and goals. As such, science is an 
extremely complex socio-economic system. I use data-driven computational methods to analyze and 
model the science of science, where the unit of analysis can vary across multiple scales, from 
publications, to individuals (careers), to teams, and large institutions such as countries. Against this 
multilevel backdrop, questions motivated from the theories of complex systems, management & 
organization science, labor economics, and research policy are often the starting point. Are there 
quantifiable patterns of scientific success? Are they useful in the career evaluation process? Are there 
ways to improve the sustainability of science careers while at the same time maintaining a high level of 
competitive selection? How do metrics for individual achievement depend on collaboration factors? 
How might paradigm shifts in science affect science careers?


