Sectoral and Geographical Specificities in the Spatial Structure of Economic Activities*

giorgio.fagiolo@sssup.it https://mail.sssup.it/~fagiolo/welcome.html

Laboratory of Economics and Management Sant'Anna School of Advanced Studies, Pisa, Italy

* Co-Authored with: Giulio Bottazzi, Giovanni Dosi and Angelo Secchi

ETH – Zurich, March 2007

- Agent-Based Computational Economics (ACE)
 - Methodology: Empirical validation in ACE models
 - Applications: ACE models and policy

- Agent-Based Computational Economics (ACE)
 - Methodology: Empirical validation in ACE models
 - Applications: ACE models and policy
- Networks
 - Game-theoretic models of strategic network formation
 - Empirical properties of economic networks: international trade and financial integration

- Agent-Based Computational Economics (ACE)
 - Methodology: Empirical validation in ACE models
 - Applications: ACE models and policy
- Networks
 - Game-theoretic models of strategic network formation
 - Empirical properties of economic networks: international trade and financial integration
- Industrial dynamics: models and empirical evidence
 - Firm locational choices and the geography of industrial agglomeration
 - Firm size and growth dynamics: the role of financial constraints

- Agent-Based Computational Economics (ACE)
 - Methodology: Empirical validation in ACE models
 - Applications: ACE models and policy
- Networks
 - Game-theoretic models of strategic network formation
 - Empirical properties of economic networks: international trade and financial integration
- Industrial dynamics: models and empirical evidence
 - Firm locational choices and the geography of industrial agglomeration
 - Firm size and growth dynamics: the role of financial constraints
- Statistical Properties of Micro/Macro Economic Dynamics
 - Statistical properties of household consumption patterns
 - Statistical properties of country-output growth (w/ Mauro Napoletano)

Home-Page

https://mail.sssup.it/~fagiolo/welcome.html

Giorgio Fagiolo Associate Professor of Economics Laboratory of Economics and Management Sant'Anna School of Advanced Studies Piazza Martiri della Libertà, 33 I-56127 Pisa (Italy) E-Mail

Curriculum Vitae (pdf) Research Teaching Publications Software Links

Last Update: Nov 2006

Outline

Motivations

- Geographical distribution of economic activities
- Are economic activities geographically clustered?
- If so, which are the determinants of geographical agglomeration?
- Empirical evidence vs. theoretical interpretations

Outline

Motivations

- Geographical distribution of economic activities
- Are economic activities geographically clustered?
- If so, which are the determinants of geographical agglomeration?
- Empirical evidence vs. theoretical interpretations

- A Dynamic Model of Firm Locational Choice
 - Boundedly-rational firms
 - Repeated locational choices under dynamic increasing returns
 - Predictions in terms of probability distributions
 - Empirically-testable model
 - Results and future extensions

Introduction

- A trivial observation...
 - Economic activities seem to be quite concentrated in geographical space

Introduction

- A trivial observation...
 - Economic activities seem to be quite concentrated in geographical space
- ... and some related questions
 - Is that true? Is geographical concentration higher than what a random-allocation model would predict?
 - Is geographical concentration high *in all* industrial sectors?
 - Are there industrial sectors that are more geographically clustered than others?
 - And, if so, which are the determinants of this uneven geographical concentration across sectors?
 - Are these determinants more related to "locations" or "sectors"?
 - In other words, are they more related to "technological factors" or to the "comparative advantage" of different areas?

- Data from Italian Statistical Office (Year: 1996)
 - Industrial agglomeration profiles
 - Share of firms belonging to sector *s* located in area *h* (normalized by the size of sector *s*)
 - Max and Herfindahl indices of agglomeration profiles

- Data from Italian Statistical Office (Year: 1996)
 - Industrial agglomeration profiles
 - Share of firms belonging to sector *s* located in area *h* (normalized by the size of sector *s*)
 - Max and Herfindahl indices of agglomeration profiles

- Data from Italian Statistical Office (Year: 1996)
 - Industrial agglomeration profiles
 - Share of firms belonging to sector s located in area h (normalized by the size of sector s)
 - Max and Herfindahl indices of agglomeration profiles

- Data from Italian Statistical Office (Year: 1996)
 - Industrial agglomeration profiles
 - Share of firms belonging to sector s located in area h (normalized by the size of sector s)

Herfindahl Index Frequency Distribution

Max and Herfindahl indices of agglomeration profiles

Some Empirical Evidence: Sectors

Very Strong Sector Heterogeneity

Shape and Range

Frequency distribution of occupancy profiles in different industries. X-axis: Number of firms in a given location; Y-axis: Number of locations that host a given number of firms

Some Empirical Evidence: Sectors

 Very Strong Sector Heterogeneity

- Shape and Range
- Number of empty locations

Frequency distribution of occupancy profiles in different industries. X-axis: Number of firms in a given location; Y-axis: Number of locations that host a given number of firms

- Traditional Story: Comparative Advantage Theories
 - Emergence of agglomeration as the result of a static trade-off between centripetal and centrifugal forces

- Traditional Story: Comparative Advantage Theories
 - Emergence of agglomeration as the result of a static trade-off between centripetal and centrifugal forces
 - Centripetal forces: economies of agglomeration
 - Within-firm economies of scale (all plants in the same location)
 - Localization economies (close to input providers, infrastructures, labor markets)
 - Urbanization (moving close to consumer markets, social capital)

- Traditional Story: Comparative Advantage Theories
 - Emergence of agglomeration as the result of a static trade-off between centripetal and centrifugal forces
 - Centripetal forces: economies of agglomeration
 - Within-firm economies of scale (all plants in the same location)
 - Localization economies (close to input providers, infrastructures, labor markets)
 - Urbanization (moving close to consumer markets, social capital)
 - Centrifugal forces
 - Increasing input costs (labor, land)
 - Congestion and pollution
 - Transportation costs

- Traditional Story: Comparative Advantage Theories
 - Emergence of agglomeration as the result of a static trade-off between centripetal and centrifugal forces
 - Centripetal forces: economies of agglomeration
 - Within-firm economies of scale (all plants in the same location)
 - Localization economies (close to input providers, infrastructures, labor markets)
 - Urbanization (moving close to consumer markets, social capital)
 - Centrifugal forces
 - Increasing input costs (labor, land)
 - Congestion and pollution
 - Transportation costs
 - Agglomeration patterns defined as equilibria between these forces
 - Von Thunen (1826), Christaller (1933), Isard (1956)
 - Fujita (1988), Papageorgiou & Smith (1983)

- "Episode I": NEG vs. Comparative Advantage Theories
 - Economic activities are more concentrated than what any "comparative advantage" theory can explain (Fujita et al. 1999)

• "Episode I": NEG vs. Comparative Advantage Theories

- Economic activities are more concentrated than what any "comparative advantage" theory can explain (Fujita et al. 1999)
- Goal: Explaining geographical concentration as the outcome of:
 - Optimal choices made by fully-rational agents
 - Centrifugal forces:
 - Firms try to meet demand across space, while avoiding as much as possible local competition
 - Centripetal forces:
 - Increasing returns to concentration; more efficient consumer markets

• "Episode I": NEG vs. Comparative Advantage Theories

- Economic activities are more concentrated than what any "comparative advantage" theory can explain (Fujita et al. 1999)
- Goal: Explaining geographical concentration as the outcome of:
 - Optimal choices made by fully-rational agents
 - Centrifugal forces:
 - Firms try to meet demand across space, while avoiding as much as possible local competition
 - Centripetal forces:
 - Increasing returns to concentration; more efficient consumer markets
- Main ingredients
 - **Increasing returns**: Expected profits from choosing to locate in a given area are increasing in the number of firms already present there
 - **Transportation costs**: Bring firms close to areas where there are big markets and cheap inputs
 - **Migration flows**: Bring workers close to areas with high employment rates and large local markets

New Economic Geography

• "Episode II": Dartboard Approach vs. New Economic Geography

Questions

- Is the starting point of NEG really true?
- Are industry-specific spatial agglomeration indices really larger than those we would have expected from a random allocation?
- How many (and which) are the industries characterized by a low (high) spatial agglomeration index?

• "Episode II": Dartboard Approach vs. New Economic Geography

- Questions

- Is the starting point of NEG really true?
- Are industry-specific spatial agglomeration indices really larger than those we would have expected from a random allocation?
- How many (and which) are the industries characterized by a low (high) spatial agglomeration index?
- Stylized model (Ellison and Glaeser, 1997)
 - Space ("dartboard") where firms ("darts") of different colors ("sectors" are thrown
 - Probability that an area receives a dart depends
 - Ex-ante natural advantage
 - Local technological spillover (extreme: advantage= zero vs. infinity)
 - Size distribution of firm sector
 - In equilibrium: testable relation linking
 - Spatial agglomeration index for each sector
 - Concentration index for each sector
 - Spatial agglomeration index does not allow to separate geographical vs. technological determinants

• Result #1

 Spatial concentration indices are larger than what a random model would predict in 97% of all cases (US States, 4-digits sectors)

• Result #1

 Spatial concentration indices are larger than what a random model would predict in 97% of all cases (US States, 4-digits sectors)

• Result #2

- Spatial concentration indices are very heterogeneous across industrial sectors
- Spatial concentration is quite smaller than that suggested by "Episode I": indices significantly smaller in many sectors

• Result #1

 Spatial concentration indices are larger than what a random model would predict in 97% of all cases (US States, 4-digits sectors)

• Result #2

- Spatial concentration indices are very heterogeneous across industrial sectors
- Spatial concentration is quite smaller than that suggested by "Episode I": indices significantly smaller in many sectors

• Problems

- Model does not generate implications about the spatial agglomeration distribution (I.e. number of firms in each area / industry): Implications only link spatial concentration index to concentration index of firm size in each given sector
- It is not possible to disentangle geographic vs. technological factors: spatial concentration index involves in non-linear ways both comparativeadvantage and technological-spillover effects

Geographical vs. Technological Determinants

Geographical Determinants

- Resources and/or localization
- Aggregate Activities
- Urbanization

Common initial conditions (not necessarily *industry-specific*)

Geographical vs. Technological Determinants

An Alternative Model

References

- Bottazzi, Dosi and Fagiolo (2002), "On the Ubiquitous Nature of the Agglomeration Economies and their Diverse Determinants: Some Notes", in Quadrio Curzio, A. and Fortis, M. (Eds.), *Complexity and Industrial Clusters: Dynamics and Models in Theory and Practice*, Heidelberg, Physica-Verlag, p.167-191.
- Bottazzi, Dosi and Fagiolo (2004), "On Sectoral Specificities in the Geography of Corporate Location", in Breschi, S. and Malerba, F. (Eds.), *Clusters, networks and innovation*, Oxford, U.K., Oxford University Press.
- Bottazzi, Dosi, Fagiolo and Secchi (2006), "Sectoral Specificities in the Spatial Structure of Economic Activities", LEM WP, 2004/21 (SCED, under review).
- Bottazzi, Dosi, Fagiolo and Secchi (2007), "Modeling Industrial Evolution in Geographical Space", LEM WP, 2007/06 (JEG, under review).

• The economy

- Potentially infinite population of agents
- Two choices {A,B}

- The economy
 - Potentially infinite population of agents
 - Two choices {A,B}
- Initial Conditions (time t=0)
 - There are n_{A,0} A-adopters and n_{B,0} B-adopters (incumbents)

- The economy
 - Potentially infinite population of agents
 - Two choices {A,B}
- Initial Conditions (time t=0)
 - There are n_{A,0} A-adopters and n_{B,0} B-adopters (incumbents)
- Dynamics
 - At each t=1,2,... one new agent enters the economy (population grows)
 - Chooses A with probability proportional to some function $f(n_{A,t})$

- The economy
 - Potentially infinite population of agents
 - Two choices {A,B}
- Initial Conditions (time t=0)
 - There are n_{A,0} A-adopters and n_{B,0} B-adopters (incumbents)
- Dynamics
 - At each t=1,2,... one new agent enters the economy (population grows)
 - Chooses A with probability proportional to some function $f(n_{A,t})$
- Results
 - Under mild hypotheses, as $t \rightarrow \infty$ the systems locks-in with p=1
 - That is: The system converges a.s. to some frequency pattern (x,1-x) of A- and Badopters
 - If there is multiplicity of lock-in frequencies, which one will be selected depends in unpredictable ways on both initial conditions and (path-dependently) the history of the process
• Firms

- Firms i = 1, ..., N
- Geographical Areas

h = 1, ..., L

- Firms
- Geographical Areas

h = 1, ..., L

- Geographical Area h
 - $\quad Geographical \ Attractiveness \qquad a_h \! \geq \! 0$
 - Agglomeration Strength
- $b_h \ge 0$ (dynamic increasing returns)

- Firms i = 1,
- Geographical Areas h = 1, ..., L
- Geographical Area h
 - $\quad Geographical \ Attractiveness \qquad a_h \! \geq \! 0$
 - Agglomeration Strength

 $b_h \ge 0$ (dynamic increasing returns)

• Time

t = 0,1, ...

- Firms i = 1, ..., NGeographical Areas h = 1, ..., LGeographical Area h

 Geographical Attractiveness $a_h \ge 0$ Agglomeration Strength $b_h \ge 0$ (dynamic increasing returns)
- Time t = 0,1, ...
- Time-t system state $\underline{n}_t = (n_{1t}, n_{2t}, \dots, n_{Lt})$

 n_{ht} = # firms in area h at time t

• At time t a configuration $\underline{n}_t = (n_1, n_2, ..., n_L)$ is given

• An area (box) is chosen at random...

• A firm (ball) is drawn (exit / death / reallocation)

- A new firm (or the one that just exited) chooses a new location
- It chooses area h with probability proportional to: $a_h + b_h n_h^*$

 The chosen area increases the number of firms (balls) it contains by one unit

- A new configuration is ready for time t+1
- The process goes on...

Analysis and Testable Implications

- Dynamics governed by a Markov Chain
 - Predictions in terms of ergodic distributions
 - We obtain analytical solutions for
 - Probability of finding $(n_1, n_2, ..., n_L)$ firms in the L areas
 - Probability that a given area contains *n* firms
 - Number of areas containing *n* firms

Analysis and Testable Implications

- Dynamics governed by a Markov Chain
 - Predictions in terms of ergodic distributions
 - We obtain analytical solutions for
 - Probability of finding $(n_1, n_2, ..., n_L)$ firms in the L areas
 - Probability that a given area contains *n* firms
 - Number of areas containing *n* firms
- Testable Implications
 - Estimation of parameter vectors (<u>a,b</u>)
 - Parameter estimation can be done in such a way to disentangle
 - Geographical determinants (a)
 - Technological determinants (b)

We estimate three alternative sub-models

Model	Hypothesis	Parameters
0	Homogeneous Areas No Agglomeration Effects Observed Agglomeration Totally Random	a _h = a > 0 b _h = 0

We estimate three alternative sub-models

Model	Hypothesis	Parameters
0	Homogeneous Areas No Agglomeration Effects Observed Agglomeration Totally Random	a _h = a > 0 b _h = 0
1	Homogeneous Areas Homogeneous Agglomeration Effects	a _h = a > 0 b _h = b >0

We estimate three alternative sub-models

Model	Hypothesis	Parameters
0	Homogeneous Areas No Agglomeration Effects Observed Agglomeration Totally Random	a _h = a > 0 b _h = 0
1	Homogeneous Areas Homogeneous Agglomeration Effects	a _h = a > 0 b _h = b >0
2	Heterogeneous Areas with Urbanization Effects Homogeneous Agglomeration Effects	a _h > 0 b _h = b > 0

Ergodic Distributions

Model	Probability of finding a profile <u>n</u> in the L areas π(<u>n</u> ; <u>a</u> , <u>b</u>)	Marginal probability of finding <i>n</i> firms in a given area p(n ; ·)
0	$\frac{N}{L^N} \prod_{l=1}^L \frac{1}{n_l!}$	$\binom{N}{n} \left(\frac{1}{L}\right)^n \left(1 - \frac{1}{L}\right)^{N-n}$

Ergodic Distributions

Model	Probability of finding a profile <u>n</u> in the L areas π(<u>n</u> ; <u>a</u> , <u>b</u>)	Marginal probability of finding <i>n</i> firms in a given area p(n ; ·)
0	$\frac{N}{L^N} \prod_{l=1}^L \frac{1}{n_l!}$	$\binom{N}{n} \left(\frac{1}{L}\right)^n \left(1 - \frac{1}{L}\right)^{N-n}$
1	$\frac{N!\Gamma(La/b)}{\Gamma(La/b+N)}\prod_{l=1}^{L}\frac{1}{n_{l}!}\frac{\Gamma(a/b+n_{l})}{\Gamma(a/b)}$	$\binom{N}{n} \frac{\Gamma(La/b)}{\Gamma(La/b+N)} \frac{\Gamma(La/b+n)}{\Gamma(La/b)} \frac{\Gamma((L-1)a/b+N-n)}{\Gamma((L-1)a/b)}$

Ergodic Distributions

Model	Probability of finding a profile <u>n</u> in the L areas π(<u>n</u> ; <u>a</u> , <u>b</u>)	Marginal probability of finding <i>n</i> firms in a given area p(n ; ·)
0	$\frac{N}{L^N} \prod_{l=1}^L \frac{1}{n_l!}$	$\binom{N}{n} \left(\frac{1}{L}\right)^n \left(1 - \frac{1}{L}\right)^{N-n}$
1	$\frac{N!\Gamma(La/b)}{\Gamma(La/b+N)}\prod_{l=1}^{L}\frac{1}{n_{l}!}\frac{\Gamma(a/b+n_{l})}{\Gamma(a/b)}$	$\binom{N}{n} \frac{\Gamma(La/b)}{\Gamma(La/b+N)} \frac{\Gamma(La/b+n)}{\Gamma(La/b)} \frac{\Gamma((L-1)a/b+N-n)}{\Gamma((L-1)a/b)}$
2	$\frac{N!\Gamma(A/b)}{\Gamma(A/b+N)}\prod_{l=1}^{L'}\frac{1}{n_l!}\frac{\Gamma(a_l/b+n_l)}{\Gamma(a_l/b)}$	$\binom{N}{n} \frac{\Gamma(A/b)}{\Gamma(A/b+N)} \frac{\Gamma(a/b+n)}{\Gamma(a/b)} \frac{\Gamma((A-a)/b+N-n)}{\Gamma((A-a)/b)}$

Data and Estimation Procedure

- Italian Census of Production Activities
 - N \approx 500000 firms (business units)
 - L=784 areas (Local Systems of Labor Mobility, LSLM)
 - M=23 industrial sectors (manufacturing, 2 digits)
 - Years: 1991, 1996, 2001

Data and Estimation Procedure

- Italian Census of Production Activities
 - $N \approx 500000$ firms (business units)
 - L=784 areas (Local Systems of Labor Mobility, LSLM)
 - M=23 industrial sectors (manufacturing, 2 digits)
 - Years: 1991, **1996**, 2001
- Data Structure
 - $n_{j,l} = #$ of firms belonging to sector j in area I
 - $f_j(n) = #$ LSLM hosting n firms belonging to sector j

Data and Estimation Procedure

- Italian Census of Production Activities
 - N \approx 500000 firms (business units)
 - L=784 areas (Local Systems of Labor Mobility, LSLM)
 - M=23 industrial sectors (manufacturing, 2 digits)
 - Years: 1991, **1996**, 2001
- Data Structure
 - $n_{j,l} = #$ of firms belonging to sector j in area I
 - $f_j(n) = #$ LSLM hosting n firms belonging to sector j
- Estimation Procedure
 - Take a given model: 0, 1, 2
 - For each sector:
 - Fit theoretical distribution $p_j(n)$ to empirical $f_j(n)$
 - Estimate free parameters by minimizing Chi-Squared test (provided that test is not rejected)

- Model 0: Random Agglomeration
 - The model is always rejected: space matters in all sectors
 - Observed concentration higher than expected in a model with homogeneous area without spillovers (as in Ellison + Glaser, 1997)

Figure 4: Occupancy class frequencies computed on observed data (white bars) and estimated using Model 0 (gray bars).

- Model 0: Random Agglomeration
 - The model is always rejected: space matters in all sectors
 - Observed concentration higher than expected in a model with homogeneous area without spillovers (as in Ellison + Glaser, 1997)

- Model 0: Random Agglomeration
 - The model is always rejected: space matters in all sectors
 - Observed concentration higher than expected in a model with homogeneous area without spillovers (as in Ellison + Glaser, 1997)
- Model 1: Homogeneous Areas with Spillovers
 - The model is better than the random one but still not satisfactory
 - Does badly on the tails: too many (few) areas with few (many) firms
 - Heterogeneity of space matters

Figure 5: Occupancy class frequencies computed on observed data (white bars) and estimated using Model 1 (gray bars) and Model 2 (black bars).

- Model 0: Random Agglomeration
 - The model is always rejected: space matters in all sectors
 - Observed concentration higher than expected in a model with homogeneous area without spillovers (as in Ellison + Glaser, 1997)
- Model 1: Homogeneous Areas with Spillovers
 - The model is better than the random one but still not satisfactory
 - Does badly on the tails: too many (few) areas with few (many) firms
 - Heterogeneity of space matters

Model 2: Urbanization Effect

- Model 2: Too many parameters to be estimated
 - Parameters a must be estimated for any location
 - # Parameters = # Loc +1

Model 2: Urbanization Effect

- Model 2: Too many parameters to be estimated
 - Parameters a must be estimated for any location
 - # Parameters = # Loc +1
- Urbanization effect
 - Assume that geographic attractiveness a(j,l) of location *j* for firms in sector *l* is linearly increasing in the number of firms located in *l* and belonging to all sectors but *j* -- with slope $\beta(j)$.

Model 2: Urbanization Effect

- Model 2: Too many parameters to be estimated
 - Parameters a must be estimated for any location
 - # Parameters = # Loc +1
- Urbanization effect
 - Assume that geographic attractiveness a(j,l) of location *j* for firms in sector *l* is linearly increasing in the number of firms located in *l* and belonging to all sectors but *j* -- with slope $\beta(j)$.
- Interpretation
 - Geographic attractiveness *a(j,l)* measures also exogenous geographical and infrastructural factors, demand-induced externalities, etc.
 - Parameter $\beta(j)$ measures overall pull exerted by all business units from all other sectors
 - Sectors with high $\beta(j)$: overall installed base of all production units brings a stronger attractive strength

- Model 0: Random Agglomeration
 - The model is always rejected: space matters in all sectors
 - Observed concentration higher than expected in a model with homogeneous area without spillovers (as in Ellison + Glaser, 1997)
- Model 1: Homogeneous Areas with Spillovers
 - The model is better than the random one but still not satisfactory
 - Does badly on the tails: too many (few) areas with few (many) firms
 - Heterogeneity of space matters
- Model 2: Heterogeneous Areas with Spillovers
 - The model performs very well also on the tails
 - Significant **net** across-sector heterogeneity in spillover effects (after controlling for differences in geographical locations)

Figure 5: Occupancy class frequencies computed on observed data (white bars) and estimated using Model 1 (gray bars) and Model 2 (black bars).

- Model 0: Random Agglomeration
 - The model is always rejected: space matters in all sectors
 - Observed concentration higher than expected in a model with homogeneous area without spillovers (as in Ellison + Glaser, 1997)
- Model 1: Homogeneous Areas with Spillovers
 - The model is better than the random one but still not satisfactory
 - Does badly on the tails: too many (few) areas with few (many) firms
 - Heterogeneity of space matters
- Model 2: Heterogeneous Areas with Spillovers
 - The model performs very well also on the tails
 - Significant **net** across-sector heterogeneity in spillover effects (after controlling for differences in geographical locations)

Model 2: Additional Results (1/2)

- Model 2: Exploring Residual Heterogeneity across Sectors
 - Polarization between sectors where
 - urbanization effect dominates (high β , low b)
 - sector-specific agglomeration effects dominate (low β , high b)

Model 2: Additional Results (1/2)

- Model 2: Exploring Residual Heterogeneity across Sectors
 - Polarization between sectors where
 - urbanization effect dominates (high β , low b)
 - sector-specific agglomeration effects dominate (low β , high b)

Model 2: Additional Results (1/2)

- Re-estimating the model without metropolitan areas
 - Metropolitan areas: 11 over 784 (around biggest cities)
 - They tend to exert a "more-of-everything" effect that is not entirely captured by urbanization effects
 - Metropolitan areas are able to significantly attract firms from sectors that are traditionally associated to Italian districts (leather, apparel)

Model 2: Additional Results (1/2)

- Re-estimating the model without metropolitan areas
 - Metropolitan areas: 11 over 784 (around biggest cities)
 - They tend to exert a "more-of-everything" effect that is not entirely captured by urbanization effects
 - Metropolitan areas are able to significantly attract firms from sectors that are traditionally associated to Italian districts (leather, apparel)

- Picture significantly changes
- Leather and apparel are now characterized by a low urbanization parameter (β)
- Agglomeration effects are mostly of a sector-specific nature
- Even when urbanization effect is present, it only explains a small part of inter-location variation in locational intensities, that is the "urbanization assumption" is not that supported by the data

Model 2: Additional Results (2/2)

- What about firm- and sector-size effects?
 - Our estimates in terms of "number of firms"
 - We treat differently the case of (1 firm, 10000 employees) vs. (100 firms, 100 employees each). What about: Increasing returns? Internalization?
 - What happens when we control for size? Estimating our model using "number of employees" instead of "number of firms"

Model 2: Additional Results (2/2)

- What about firm- and sector-size effects?
 - Our estimates in terms of "number of firms"
 - We treat differently the case of (1 firm, 10000 employees) vs. (100 firms, 100 employees each). What about: Increasing returns? Internalization?
 - What happens when we control for size? Estimating our model using "number of employees" instead of "number of firms"

- After having taken away metropolitan areas, results seem to be confirmed
- Relatively high heterogeneity
- Sector-specific effects dominate

Model 2: Additional Results (2/2)

- What about firm- and sector-size effects?
 - Our estimates in terms of "number of firms"
 - We treat differently the case of (1 firm, 10000 employees) vs. (100 firms, 100 employees each). What about: Increasing returns? Internalization?
 - What happens when we control for size? Estimating our model using "number of employees" instead of "number of firms"

- After having taken away metropolitan areas, results seem to be confirmed
- Relatively high heterogeneity
- Sector-specific effects dominate
- We are able to capture effects of location patterns of industries composed of few but very large firms
 - Motor vehicles (34) are characterized by a very large agglomeration coefficient

Results: A Sneak-in Preview (2/2)

- Which interpretation for ex-post cross-sector heterogeneity in technological determinants to agglomeration?
 - Do sectoral specificities (technological and organizational learning) map onto different spatial agglomeration strengths?
 - Is it possible to taxonomize industrial sectors with respect to their net weight of the technological determinant in spatial agglomeration processes?

Results: A Sneak-in Preview (2/2)

- Which interpretation for ex-post cross-sector heterogeneity in technological determinants to agglomeration?
 - Do sectoral specificities (technological and organizational learning) map onto different spatial agglomeration strengths?
 - Is it possible to taxonomize industrial sectors with respect to their net weight of the technological determinant in spatial agglomeration processes?

- Yes. According to Pavitt taxonomy:
 - Sectors belonging to different macro-classes display statistically significant and interpretable agglomeration strength (i.e. *b* coefficients in Model 2)

Sector	Example	Agglomeration Economies	Why?
Scale Intensive	Transport Equipment	Higher	 Hierarchical relations among firms "Oligopolistic core" Subcontracting networks
Supplier Dominated	Leather		 Italian Districts Inter-firm division of labor Knowledge complementarities District-specific institutional arrangements
Science-Based	Electronics	Intermediate	 Expected higher "Silicon Valley" effects In Italy: Weaker
Info-Intensive	Financial Intermediation	Lower	 "Monopolistic competition" strategies of branch location near customers

Conclusions

- Simple testable model of industrial agglomeration
 - Italian patterns of spatial agglomeration are not random: space matters
 - Heterogeneous geographical determinants
 - Significant net across-sector heterogeneity of technological determinants
 - This heterogeneity can be partly explained by the across-sector difference about technological and organizational learning patterns

Conclusions

- Simple testable model of industrial agglomeration
 - Italian patterns of spatial agglomeration are not random: space matters
 - Heterogeneous geographical determinants
 - Significant net across-sector heterogeneity of technological determinants
 - This heterogeneity can be partly explained by the across-sector difference about technological and organizational learning patterns
- What we are doing now, and what do we plan for future research
 - Deeper understanding of Pavitt-like taxonomic exercises
 - Robustness of results to alternative
 - Time-spans
 - Countries and databases
 - More micro-founded version of the model
 - Inter-sectoral spillovers and geographical distances