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CRISES

e dramatic and rapid change of a system which is the
culmination of a complex preparatory stage.

o fundamental societal impacts

8 larpe natural catastrophes
1. earthquakes,

2. volcanic eruptions,

3. hurmeanes and tornadoes,

4. landslides, avalanches.
0. lightning strikes,
6. meteorite/asteroid impacts,

jE—

7. catastrophie events of environmental degradation.



8 failure of engineering struectures,
e crashes in the stock market.

e social unrest leading to large-scale strikes and up-

heawval,
& cconommic drawdowns on national and global scales.
e regional power blackonts,
o {raffic gridlock.

e discases and epidemics, ete.




Algorithmic complexity theory: most complex systems have
been proved to be computationally irreducible, i.e. the only way to
decide about their evolution isto actually let them evolve in time.

The future time evolution of most complex systems appears
Inherently unpredictable.

BUT, Physicsworks and is not hampered by computational irreducibility
because we only ask for answers at some coarse-grained level.



Computational Irreducibility and the Predictability of Complex Physical Systems

Navot Israeli and Nigel Goldenfeld
PhysRevLett.92.074105 (2004)
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FIG. 1. Examples of coarse-graining transitions. (a) and (b) s e o

show coarse-graining rule 146 by rule 128. (a) shows results of
running rule 146. The top line is the initial condition and time
progress from top to bottom. (b) shows the results of running
rule 128 with the coarse-grained initial condition from (a).
(¢) and (d) show coarse-graining rule 105 by rule 150. (c) shows
rule 105 and (d) shows rule 150.

FIG. 2. Coarse-graining transitions within the family of 256
C(fita(o)) — f% C(Cl (0)) elementary CA. Only transitions with a cell block size N = 2,

3, and 4 are shown. An arrow indicates that the origin rules can

Namely, running the original CA for Tt time steps and |be coarse grained by the target rules and may correspond to
then coarse graining is equivalent to coarse graining the|S¢veral choices of N and P.

initial condition and then running the modified CA 7 time N-block apprOaCh with N:2, 3or4

steps. The constant 7' is a time scale associated with the .. _ B
coarse graining. Coarse-graining rule 110: CIR =>C1




L'vov, V. S., Pomyalov, A., and Procaccia, 1. (2001). Outliers, Extreme Events and
Multiscaling, Physical Review E 6305, 6118, U158-U166.

F1G. 3.2. Apparent probability distribution function of the square of the fluid veloc-
ity, normalized to its time average, in the eleventh shell of the toy model of hydro-
dynamic turbulence discussed in the text. The vertical axis is in logarithmic scale 7
such that the straight line, which helps the eye, qualifies as an apparent exponential
distribution. Note the appearance of extremely sparse and large bursts of velocities at |
the extreme right above the extrapolation of the straight line. Reproduced from [252].
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F1G. 3.3. Probability distribution function of the square of the velocity as in Figure
3.2 but for a much longer time series, so that the tail of the distributions for very
large fluctuations is much better constrained. The hypothesis that there are no out-
liers 1s tested here by “collapsing™ the distributions for the three shown layers. While
this 1s a success for small fluctuations, the tails of the distributions for large events
are very different, indicating that extreme fluctuations belong to a class of their own,

I
o

Ln[P(U,2)]

Shell 11 & 7+ oy, Shell 18
-15 s
. {gﬁ é:ﬁs;?‘a.u:
shell15 "~ =F=aRvi were.
| | | i ...ﬁ. : .-". 4-. .-
0 50 100 150 200

u,’



A Mechanism for Pockets of Predictability in Complex Adaptive Systems

J.V. Andersen and D. Sornette
Europhys. Lett., 70 (5), 697-703 (2005)

The Minority Game (MG) and the $-Game ($G)

signal (1 ) | prediction
Total action of agents 83? 8
H pb 010 1
A Z a; 011 0
_ 100 1
Price equatlon 101 0
1)) — 7 9\ /7 110 1
log (P(t+1)) =log (P(1)) + A*(t +1/2)/N 111 0
Example of strategy
M G payoff of strategy i : gf(f) = —a?;(f)A(t)

$-game payoff of strategy i : Gi(1) = ai(t — 1) A(?)
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Fig. 1. Payoff function (1) (upper graph) and wealth (lower
graph) for the MG-game showing the best (dotted line) and
worst (solid line) performing agent for a game using N = 501
agents, memory of m = 10 and s = 10 strategies per agent. No
transaction costs are applied.
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Fig. 2. Price, wealth of market-maker and risk-return plots for
three different parameter choices using the payoff function (3)
and the constraint that agents can only accumulate one po-
sition at a time. Solid line and black circle: m = 10,s = 4;

dashed-dotted line and circle: m = 10, s = 10; dotted line and
square: m = 8, s = 10. J.V. Andersen and D. Sornette

The $-game, Eur. Phys. J. B 31, 141-145 (2003)



Predictability of Large Future Changes in a Competitive Evolving Population
Lampert, Howison and Johnson, PRL 88, 017902 (2002)

Third-party game calibration Crash prediction
on a black-box game
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The concept of decoupled strategies

1+ elgn[/l“(k)]
2

History: t () = 4 k=t—-—m+1,..,t}

e A strategy s; 1s called n—time steps decoupled con-
ditioned on fi,, () if the action s; (pm, (t +n+ 1)) does
not depend on i, (¢ + 1), ..., um(t + n).

casem=3 piz(t) = abe if s(bc0) = s(bel)

One-step decoupled

The strategy s 1s two-step decoupled conditioned on

p3(t) = abe if s(c00) = s(c01) = s(c10) = s(ell).



If decoupled strategies dominate => predictability
since decision independent of next outcome(s)

Decomposition of total action:

AHm(t) = A“m(t) _|_A“’m(t) (3)

coupled decoupled

Condition of certain predictability

m (b
Al (1) > N/2

For N=25 and N=102, very small probability for these pockets of pre-
dictability to occur by chance (assuming decoupling between agents)

Prpred < 7-107% and Prppeq < 2.5 - 10717
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FIG. 3: Fat dashed line: Nasdaq Composite price history
(black-box game) as a function of time (days); thin solid
lines: ten predicted price trajectories obtained from the third-
party games. The first in-sample 61 days are used to calibrate
ten third-party games. The days 62-123 are out-of-sample.
The third-party games make a poor job at predicting the out-
of-sample prices of the Nasdaq Composite index, while table
1 shows that they predict specific pockets of predictability
associated with forecasted “prediction days™ (see text).
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TABLE I: Out-of-sample success rate % (second row) using
different thresholds for the predicted global decoupled action
(first row) of the third-party $-games calibrated to the Nasdaq
Composite index. Nb (third row) is the number of days from
t = 62 to 123 which have their predicted global decoupled
action | Agecoupled| larger than the value indicated in the first

row.




Predictability of large future changes m major financial indices

D. Sornette and W.-X. Zhou
Intemational Journal of Forecasting  (in press) cond-mat/0304601

Sparse-data pattern recognition method
Gelfand et a (1976)

Trait: array of answersto set of questions
Feature: atreat which isfrequent in class | and unfrequent in class |

Alarm index(t): moving average of number of features at timet
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Rational Expectation Bubbles and Crashes

Martingale hypothesis ( “no free lunch’):

for all ¢ >t E¢p(t)] = p(t)
If crashes are depletions of bubbles:

dp = u(t) p(t) dt — k[p(t) — p1ldj
Martingale gives h(t)=E[dj]]

u(t)p(t) = klp(t) — p1]h(t) ,
i.e., if crash hazard rate h(t) increases, so must
the return (bounded rationality)

A. Johansen, D. Sornette and O. Ledoit A. Johansen, O. Ledoit and D. Sornette, Crashes as critical
Predicting Financial Crashes using discrete scale invariance, points, International Journal of Theoretical and Applied
Journal of Risk 1 (4), 4, 5-32 (1999) Finance 3 (2), 219-255 (2000)



Mechanisms for positive feedbacks in the stock market

* Technical mechanisms
1. Option hedging
2. Insurance portfolio strategies
3. Trend following investment strategies

 Behavioral mechanisms
1. It is rational to imitate
2. It is the highest cognitive task to imitate
3. We mostly learn by imitation



Importance of Positive Feedbacks and
Over-confidence 1n a Self-Fulfilling Ising
Model of Financial Markets

s;(1) = sign Z K:i(O)E[s;|(t) + o;(t)G(L) + €(1)

___}E..rv

I News Private |
Imitation information

]’i:gj(t) = bgj —+ (J{ﬁf‘fgj(?f — 1) -+ ﬁ?‘(t — 1)G(t — 1)

3<0: rational agents

In[P(r /c)]
T r

3>0: over-confident agents

Didier Sornette and Wei-Xing Zhou
Journal of Economic Behavior and Organization
(http://arxiv.org/abs/cond-mat/0503607)




Oscillatory Finite-Time Singularities
in Finance, Population and Rupture

Non-linear fundamental value strategies
Non-linear technical analysis strategies
Inertia

m=2.5 =3 0)=0.02
25"””

K. ldeand D. Sornette

Oscillatory Finite-Time Singularities
in Finance, Population and Rupture,
PhysicaA 307 (1-2), 63-106 (2002)
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Determination of relevant “traits” that allow us to
distinguish targets from non targets in the Learning process

h(t) > 0,

\4
—C]Vm2 + w? > 0

Parameter for positivity of crash hazard rate

Figure 1: Density distribution p(w|l or II) of the DSI parameter

w obtained from (1) and complementary cumulative distribution
P(|l or II) of the constraint parameter b obtained from (2) for the
objects in classes I (dotted, dashed, and dotted-dashed) and II
(continuous) for three different values of {;.




Multi-scale approach to critical times
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Figure 2: Alarm times t (or dangerous objects) obtained by the
multiscale analysis. The alarms satisfy 6 > 0, 6 < w < 13 and 0.1 <
m < 0.9 simultaneously. The ordinate is the investigation “scale”
in trading day unit. The results are robust with reasonable
changes of these bounds.



SYNOPSIS OF THE PATTERN RECOGNITION METHOD

We select a few targets (the three well-known speculative bubbles ending in a crash
at Oct. 1929, Oct. 1987 and Aug. 1998 for the US index and two targets for the
Hang Seng), which serve to train our system (independently for the two indices).

An object is defined simply as a trading day ending a block of trading days of a
pre-defined duration,

Those objects which are in a neighborhood of the crashes of the targets are defined
to belong to class |. All other objects are said to belong to class 11,

I‘or each object, we fit the price trajectory with expression (1) over a given time
scale (defining the duration of the block of days ending with the object used in the
fit) and obtain the corresponding values of the parameters, which are considered as
characteristic of the object. This step is repeated nine times, once for each of the nine
time scales used in the analysis. We keep 5 parameters of the fit by expression (1) for
each time scale, thus giving a total of 5 X 9 parameters characterizing each object.



e We construct the probability density functions (pdf) of each parameter over all objects
of class I and of class |l separately. Those parameters which are found to exhibit suffi-
ciently distinct pdf’s over the two classes are kept as being sufficiently diseriminating.
In this way, out of the total of 45 parameters, 31 are kept.

e Bach selected parameter gives a binary information, Y or N, as whether its value for
a given object falls within a qualifying interval for class 1.

® As a compromise between robustness and an exhausive description, we group the
parameters in triplets (called traits) to obtain a characterization of objects. Ideally,
one would like to use all 31 parameters simultaneously for each object, but the curse

of dimensionality prevents doing this.

e We study the statistics of all traits and look for those which are frequent in objects
of class I and unfrequent in objects of class II. Such traits are called features.

e The Alarm Index at a given time is defined as a moving average number of distinctive
features found at that time. Large values of the Alarm Index are proposed to be
predictors of changes of regime in the stock market.



Multiscale Pattern Recognition Method
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Figure 3: (Color online) Alarm index AI(t) (upper panel) and

the DJIA index from 1900 to 2003 (lower panel). The peaks of
the alarm index occur at times indicated by arrows in the bottom
panel.
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COLLECTIVE BEHAVIOR between AGENTS

Basle Committee on Banking Supervision: “In handling systemic
Issues, it will be necessary to address, on the one hand, risksto
confidence in the financial system and contagion to otherwise
sound institutions, and, on the other hand, the need to minimize
thedistortion of market signals and discipline.”

A. Greenspan (Aug., 30, 2002):

“We, at the Federal Reserve...recognized that, despite our
suspicions, it was very difficult to definitively identify a bubble
until after the fact, that is, when its bursting confirmed
Itsexistence... Moreover, it wasfar from obviousthat bubbles,
even if identified early, could be preempted short of the Central
Bank inducing a substantial contraction in economic activity, the
very outcome we would be seeking to avoid.”



Challenges

Small data sets

Nonlinear dependences vs zero correlation
Stochastic reconstructions
Non-stationarity

— Changes of regime (regime-switching)

— Conventions

— Irreversibility, learning, evolution

Theory of decision making



